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Abstract— We investigate statistical anomaly detection algo-
rithms for detecting SYN flooding, which is the most common
type of Denial of Service (DoS) attack. The two algorithms
considered are an adaptive threshold algorithm and a partic-
ular application of the cumulative sum (CUSUM) algorithm
for change point detection. The performance is investigated in
terms of the detection probability, the false alarm ratio, and
the detection delay. Particular emphasis is on investigating the
tradeoffs among these metrics and how they are affected by
the parameters of the algorithm and the characteristics of the
attacks. Such an investigation can provide guidelines to effectively
tune the parameters of the detection algorithm to achieve specific
performance requirements in terms of the above metrics.

I. INTRODUCTION

Over the past few years many sites on the Internet have been
the target of denial of service (DoS) attacks, among which
TCP SYN flooding is the most prevalent [1]. Indeed, recent
studies1 have shown an increase of such attacks, which can
result in disruption of services that costs from several millions
to billions of dollars.

The aim of denial of service attacks are to consume a large
amount of resources, thus preventing legitimate users from
receiving service with some minimum performance. TCP SYN
flooding exploits TCP’s three-way handshake procedure, and
specifically its limitation in maintaining half-open connections.
A TCP connection starts with the client sending a SYN mes-
sage to the server, indicating the client’s intention to establish a
TCP connection. The server replies with a SYN/ACK message
to acknowledge that it has received the initial SYN message,
and at the same time reserves an entry in its connection table
and buffer space. After this exchange, the TCP connection is
considered to be half open. To complete the TCP connection
establishment, the client must reply with an ACK message. In
a TCP SYN flooding attack, an attacker, from a large number
of compromised clients in the case of distributed DoS attacks,
sends a very large number of SYN messages, with fictitious
(spoofed) IP addresses, to a single server (victim). Although
the server replies with SYN/ACK messages, these messages
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are never acknowledged by the client. As a result, many half-
open connections exist on the server, consuming its resources.
This continues until the server has consumed all its resources,
hence can no longer accept new TCP connection requests.

In this paper we present and evaluate two anomaly detection
algorithms for detecting TCP SYN attacks: an adaptive thresh-
old algorithm and a particular application of the cumulative
sum (CUSUM) algorithm for change point detection. Our
focus is on investigating the tradeoffs between the detection
probability, the false alarm ratio, and the detection delay, and
how these tradeoffs are affected by the parameters of the
detection algorithm and the characteristics of the attacks. Such
an investigation can assist in tuning the parameters of the de-
tection algorithm to satisfy specific performance requirements.
Our results show that although simple and straightforward
algorithms, such as the adaptive threshold algorithm, can
exhibit good performance for high intensity attacks, their
performance deteriorates for low intensity attacks. On the
other hand, algorithms based on a strong theoretical foundation
can exhibit robust performance over various attack types, and
without necessarily being complex or costly to implement.
Detection of low intensity attacks is particularly important
since this would enable the early detection of attacks whose
intensity slowly increases, and the detection of attacks close
to the sources, either in routers or monitoring stations, thus
facilitating the identification of compromised hosts that are
participating in distributed DoS attacks [2].

Next we present a brief overview of related work. The
authors of [3] investigate predictive detection of anomalies
for a web server, analysing time series measurements of the
number of http operations per second. The proposed statistical
model considers both seasonal and trend components, which
are modelled using a Holt-Winters algorithm, and time correla-
tions which are modelled using a second order autoregressive
model. After removing the above non-stationarities from the
time series measurements, anomalies are detected using a gen-
eralized likelihood ratio (GLR) algorithm. A similar approach
is used in [4], which considers measurements collected in
MIB (Management Information Base) variables. The authors
of [5] model the seasonal and trend components similar to
[3]. A problem is detected when the actual measured value
deviates from the predicted value (estimated using a moving
average procedure) by some number of standard deviations.



The author of [6] considers a similar approach for modelling
the seasonal and trend component, and detects an anomaly
when the measured variable falls outside a confidence band,
which is estimated from previous differences of the measured
variable and its predicted value.

The authors of [2] propose an approach for detecting SYN
flooding attacks using a CUSUM-type algorithm, which is
applied to the time series measurements of the difference of
the number of SYN packets and the corresponding number
of FIN packets in a time interval. Our work also considers
a CUSUM-type algorithm, however the specific form, hence
the corresponding equations, differ; moreover, we apply it to
measurements of the number of SYN packets, while avoiding
the need to explicitly take into account the seasonality and
trend by considering an exponential weighted moving average
for obtaining a recent estimate of the mean rate of SYN
packets. Finally, the authors of [7] also consider a CUSUM-
type algorithm, combined with a χ2 goodness-to-fit test.

In addition to the specific algorithms we investigate, our
work differs from the above in that we emphasize on inves-
tigating the performance of the detection algorithms in terms
of three metrics: detection probability, false alarm ratio, and
detection delay. Moreover, our experiments investigate how the
tradeoff between these metrics is affected by the parameters
of the detection algorithm and the characteristics of attacks.

The rest of the paper is organized as follows. In Section II
we present the two anomaly detection algorithms that we
investigate. In Section III we present and discuss the results
investigating the performance of the algorithms, in terms of
detection probability, false alarm ratio, and detection delay,
and how the performance is affected by the parameters of
the algorithm and the characteristics of the attacks. Finally, in
Section IV we present some concluding remarks and identify
related ongoing work.

II. ANOMALY DETECTION ALGORITHMS

In this section we present the two statistical anomaly
detection algorithms that we apply for detecting SYN flooding
attacks. The first, which we will refer to as adaptive threshold
algorithm, is a rather straightforward and simple algorithm
that detects anomalies based on violations of a threshold that
is adaptively set based on recent traffic measurements. The
second is an application of the cumulative sum (CUSUM)
algorithm, which is a widely used anomaly detection algorithm
that has its foundations in change point detection theory. Our
selection of these two algorithms is twofold: First, based on
the numerical experiments presented in Section III, we wish
to demonstrate that a simple and naive algorithm can exhibit
satisfactory performance for some types of attacks, such as
high intensity attacks, but can have very bad performance
for other types of attacks, such as low intensity attacks.
Second, we wish to demonstrate that algorithms based on a
strong statistical foundation can exhibit robust performance
over various attack types, without necessarily being complex
or costly to implement.

A. Adaptive threshold algorithm

This algorithm relies on testing whether the traffic mea-
surement, number of SYN packets in our case, over a given
interval exceeds a particular threshold. In order to account for
seasonal (daily and weekly) variations and trends, the value
of the threshold is set adaptively based on an estimate of the
mean number of SYN packets.

If xn is the number of SYN packets in the n-th time interval,
and µ̄n−1 is the mean rate estimated from measurements prior
to n, then the alarm condition is

If xn ≥ (α + 1)µ̄n−1 then ALARM signalled at time n ,

where α > 0 is a parameter that indicates the percentage
above the mean value that we consider to be an indication
of anomalous behaviour. The mean µn can be computed over
some past time window or using an exponential weighted
moving average (EWMA) of previous measurements

µ̄n = βµ̄n−1 + (1 − β)xn , (1)

where β is the EWMA factor.
Direct application of the above algorithm would yield a high

number of false alarms (false positives). A simple modification
that can improve its performance is to signal an alarm after a
minimum number of consecutive violations of the threshold.

If
n∑

i=n−k+1

1{xi≥(α+1)µ̄i−1} ≥ k then ALARM at time n ,

(2)
where k > 1 is a parameter that indicates the number of
consecutive intervals the threshold must be violated for an
alarm to be raised.

The tuning parameters of the above algorithm are the
amplitude factor α for computing the alarm threshold, the
number of successive threshold violations k before signalling
an alarm, the EWMA factor β, and the length of the time
interval over which traffic measurements (number of SYN
packets) are taken.

B. CUSUM (Cumulative SUM) algorithm

The CUSUM algorithm belongs to the family of change
point detection algorithms that are based on hypothesis testing,
and was developed for independent and identically distributed
random variables {yi}. According to the approach, there are
two hypothesis θ0 and θ1, with probabilities pθ0 and pθ1 , where
the first corresponds to the statistical distribution prior to a
change and the second to the distribution after a change. The
test for signalling a change is based on the log-likelihood ratio
Sn given by

Sn =
n∑

i=1

si , where si = ln
pθ1(yi)
pθ0(yi)

.

The typical behaviour of the log-likelihood ratio Sn includes
a negative drift before a change and a positive drift after the
change. Therefore, the relevant information for detecting a



change lies in the difference between the value of the log-
likelihood ratio and its current minimum value [8]. Hence the
alarm condition for the CUSUM algorithm is

If gn ≥ h then ALARM signalled at time n , (3)

where

gn = Sn − mn and mn = min
1≤j≤n

Sj . (4)

The parameter h is a threshold parameter.
Assume that {yi} are independent Gaussian random vari-

ables with known variance σ2, which we assume remains the
same after the change, and µ0 and µ1 the mean before and
after the change. After some calculations [8], (4) reduces to

gn =
[
gn−1 +

µ1 − µ0

σ2

(
yn − µ1 + µ0

2

)]+

. (5)

Above we have assumed that {yn} are independent Gaussian
random variables. Of course this is not true for network traffic
measurements, such as the number of SYN packets, due to
seasonality (weekly and daily variations), trends, and time
correlations. Such non-stationary behaviour should be removed
before applying the CUSUM algorithm. One approach for
achieving this is proposed in [3], where seasonality and
trend is removed using the Holt-Winters algorithm and time
correlations are removed using an autoregressive algorithm. In
addition to leading to complex and time-consuming calcula-
tions, experiments we have conducted showed that the above
approach, applied to the problem of detecting SYN flooding
attacks, leads to minor gains compared to simpler approaches.
For this reason we consider the following simple approach:
We apply the CUSUM algorithm to x̃n, with

x̃n = xn − µ̄n−1 ,

where xn is the number of SYN packets in the n-th time
interval, and µ̄n is an estimate of the mean rate at time n,
which is computed using an exponential weighted moving
average, as in (1). The mean value of x̃n prior to a change is
zero, hence the mean in (5) is µ0 = 0. A remaining issue that
needs to be addressed is the value of µ1, i.e. the mean traffic
rate after the change. This cannot be known beforehand, hence
we approximate it with αµ̄n, were as in the adaptive threshold
algorithm the average µ̄n is updated using an exponential
weighted moving average, and α is an amplitude percentage
parameter, which intuitively corresponds to the most probable
percentage of increase of the mean rate after a change (attack)
has occurred. Hence, (5) becomes

gn =
[
gn−1 +

αµ̄n−1

σ2

(
xn − µ̄n−1 − αµ̄n−1

2

)]+

. (6)

It is interesting to contrast the above approach with that in [2],
where daily variations are addressed by dividing the difference
of the number of SYN packets and the number of FIN packets
in a time interval, with the average number of FIN packets,
hence is based on detecting changes when the number of SYN
packets exceeds the number of FIN packets. Our approach is
more general, since it can be applied to attacks other than SYN

flooding. Indeed, an interesting application would be to use
the algorithm for early detection of QoS (such as maximum
delay) violations; such an approach can be justified by the fact
that a large number of QoS violations are due to anomalies
(including DoS attacks), hence anomaly detection techniques
can warn for potential QoS violations before they occur.

The tuning parameters of the CUSUM algorithm are the
amplitude percentage parameter α, the alarm threshold h, the
EWMA factor β, and the length of the time interval over which
traffic measurements are taken. These parameters are identical
to the ones for the adaptive threshold algorithm, except for h
which is the alarm threshold in the CUSUM algorithm.

III. PERFORMANCE EVALUATION

In this section we investigate the performance of the two
algorithms presented in the previous section for detecting TCP
SYN flooding attacks. The performance metrics considered
include the detection probability, the false alarm rate, and
the detection delay. Additional experiments investigating how
different parameters of the detection algorithm and the char-
acteristics of the attack affect the performance appear an the
extended version of this paper [9].

Our experiments used actual network traffic taken from the
MIT Lincoln Laboratory2. We used trace data taken during
two days, with the trace from each day containing 11 hours
of collected packets (08.00-19.00). The first investigations that
we present considered SYN packet measurements in 10 second
intervals. In some experiments, we also used a 14.5 hour
trace taken from the link connecting the University of Crete’s
network to the Greek Research and Technology Network
(GRNET).

The attacks were generated synthetically; this allowed us to
control the characteristics of the attacks, hence to investigate
the performance of the detection algorithms for different attack
types. The duration of one attack was normally distributed
with mean 60 time intervals (10 minutes assuming 10 second
intervals) and variance 10 time intervals. The inter-arrival time
between consecutive attacks was exponentially distributed,
with mean value 460 time intervals (approximately 77 minutes
assuming 10 second intervals); this results in approximately 8
attacks in an 11 hour period.

The detection probability is the percentage of attacks for
which an alarm was raised, and the false alarm ratio (FAR) is
the percentage of alarms that did not correspond to an actual
attack. Unless otherwise noted, the parameters we considered
for the adaptive threshold algorithm were α = 0.5, k = 4, and
β = 0.98, and the parameters for the CUSUM algorithm were
α = 0.5, h = 5, and β = 0.98.

A. High intensity attacks

Our first experiment considered high intensity attacks,
whose mean amplitude was 250% higher than the mean traffic
rate, which was approximately 31.64 SYN packets in one time
interval; the length of the time interval was 10 seconds.

2DARPA intrusion detection evaluation:
http://www.ll.mit.edu/IST/ideval



0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

Attacks

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

(a) Adaptive threshold

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

300

Attacks

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

(b) CUSUM
Fig. 1. High intensity attacks. Both the adaptive threshold and the CUSUM
algorithm have very good performance.

Figures 1(a) and 1(b) show the results for the adaptive
threshold and the CUSUM algorithm, respectively. The hori-
zontal axis in these figures is the time interval, with 0 and 4000
corresponding approximately to 8:00 and 19:00, respectively.
In each figure, from top to bottom, we have the traffic trace
with attacks, the original traffic trace without attacks, the
attacks only, and finally the bottom graph shows the time
intervals where an alarm was raised. The figures show that
both the adaptive threshold and the CUSUM algorithm have
excellent performance for high intensity attacks, since they
both yielded a detection probability of 100% and a false alarm
ratio (FAR) of 0%. The detection delay was very close: 3.01
and 2.75 time intervals, respectively.

B. Low intensity attacks

Next we investigate the performance of the attack detection
algorithms in the case of low intensity attacks, whose mean
amplitude is 50% of the traffic’s actual mean rate. Detection
of low intensity attacks is important for two reasons: First,
early detection of DoS attacks with increasing intensity would
enable defensive actions to be taken earlier. Second, detection
of low intensity attacks would enable the detection of attacks
close to the sources, since such a placement of detectors can
facilitate the identification of stations that are participating in
a distributed DoS attack.

Figure 2(a) shows that for low intensity attacks the per-
formance of the adaptive threshold algorithm has deteriorated
significantly, giving a very high FAR equal to 32%. On the
other hand, Figure 2(b) shows that the performance of the
CUSUM algorithm remains close to its performance in the
case of high intensity attacks, namely the FAR was less
than 9%. Nevertheless, the detection delay of the CUSUM
algorithm has increased to 10.25 time intervals, from only 2.75
time intervals in the case of high intensity attacks. Note that
the detection probability for both algorithms was 100%.

The difference in the performance of the adaptive threshold
and the CUSUM algorithms lies in the way each maintains
memory: the adaptive threshold algorithm has memory of
whether the threshold was violated or not in the previous
k−1 time intervals. On the other hand, the CUSUM algorithm
maintains finer information on the amount of data exceeding
the amount expected based on some estimated mean rate, (6).

1) Tradeoff between detection probability and false alarm
ratio: The above results were for specific values of the param-
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Fig. 2. Low intensity attacks. The performance of the adaptive threshold
algorithm has deteriorated significantly. compared to its performance for high
intensity attacks. On the other hand, the performance of the CUSUM algorithm
remains very good.
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(b) CUSUM
Fig. 3. Detection probability and false alarm ratio for low intensity attacks.
The CUSUM algorithm has better performance than the adaptive threshold
algorithm (better performance corresponds to points towards the lower-right).

eters of the two detection algorithms. Figures 3(a) and 3(b)
show the tradeoff between the detection probability and the
false alarm ratio (FAR) for different values of k for the adap-
tive threshold algorithm (2), and h for the CUSUM algorithm
(3). Each point in the graph corresponds to a different value
of the tuning parameter, k or h, in the interval [1, 10]. The
data for each point was the average of 50 runs. Observe that
the CUSUM algorithm exhibits better performance, supporting
our observation in the previous section.

Figures 4(a) and 4(b) shows the performance of the CUSUM
and of the algorithm in [2], for traces from the University of
Crete (for which h obtains values in the interval [10, 100]).
The algorithm of [2] is given by

gn = [gn−1 + (Xn − a′)]+ ,

where Xn is the (# of SYN pkts - # of FIN pkts)/(average #
FIN pkts). The graph in Figure 4(b) for the algorithm of [2]
was obtained for an alarm threshold h = 9, and for a′ in the
interval [1, 10]. Observe that the CUSUM algorithm discussed
in this paper has better performance than the algorithm in [2].

Graphs such as those in Figures 3 and 4 can assist in tuning
the parameters of the detection algorithm. Indeed, note that the
alarm threshold h is different for different traces, and controls
the sensitivity of the attack detection.

2) Tradeoff between false alarm ratio and detection delay:
Next we investigate the tradeoff between the false alarm ratio
and the detection delay. Figures 5(a) and 5(b) show the results
in the case of low intensity attacks for the adaptive threshold
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Fig. 4. False alarm ratio and detection probability for the CUSUM algorithm
proposed in this paper and the algorithm in [2].
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Fig. 5. False alarm ratio and detection delay for the adaptive threshold and the
CUSUM algorithms for low intensity attacks (better performance corresponds
to points towards the lower-left).

and the CUSUM algorithm, respectively. Each point in the
graph corresponds to a different value of the tuning parameter,
k or h. Note that in Figure 5(a), which is for the adaptive
threshold algorithm, the values on the lower-left correspond
to low detection delay, but have a small detection probability.

3) Effect of the amplitude factor α: Figure 6(a) shows the
effect of the amplitude factor α for the CUSUM algorithm,
when the threshold parameter h was adjusted in order to
achieve a 100% detection probability. The graph was obtained
by taking the average of 10 runs, which yielded a 95%
confidence interval of ±0.045. The figure shows that the
performance of the CUSUM algorithm was indifferent to the
factor α, for a large range of its values, approximately [0.1, 1].

4) Effect of the EWMA factor β: Figure 6(b) shows the
effect of the EWMA factor β for the CUSUM algorithm,
when the threshold parameter h was adjusted in order to
achieve a 100% detection probability. As before, the graph
was obtained by taking the average of 10 runs, which yielded
a 95% confidence interval of ±0.045. The figure shows that
the best performance of the CUSUM algorithm was for values
of β in the interval [0.95, 0.99].

IV. CONCLUSIONS

We described and investigated two anomaly detection algo-
rithms for detecting SYN flooding attacks, namely an adaptive
threshold algorithm and an algorithm based on the CUSUM
change point detection scheme. Our investigations considered
the tradeoff between the attack detection probability, the
false alarm ratio, and the detection delay, and how these are
affected by the parameters of the anomaly detection algorithm.

(a) Amplitude factor α

(b) EWMA factor β

Fig. 6. Effect of amplitude factor α and EWMA factor β for the CUSUM
algorithm.

Our results illustrate that although a simple straightforward
algorithm such as the adaptive threshold algorithm can have
satisfactory performance for high intensity attacks, its per-
formance deteriorates for low intensity attacks. On the other
hand, an algorithm based on change point detection, such as
the CUSUM algorithm, can exhibit robust performance over
a range of different types of attacks, without being more
complex.

Ongoing work focuses on the application of the algorithms
to an actual production network, for both the incoming and
the outgoing traffic, the combination of the algorithms with
defensive mechanisms, and the application of the algorithms
for early detection of QoS, such as maximum delay, violations.
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