
SIS Thesaurus Management
System

Update Application Programmatic
Interface

Reference Manual

Version 1.1

Institute of Computer Science

Foundation for Research and Technology - Hellas

SIS-TMS Application Programmatic Interface, Reference Manual

TABLE OF CONTENTS

1. INTRODUCTION 5

1.1 SIS-TMS Technical Characteristics 5

1.2 SIS-TMS Programmatic Interface Technical Characteristics 5

1.3 SIS-TMS client-server model 6

1.4 SIS sessions and TMS sessions 6

2 THE PROGRAMMATIC SCENARIO 6

3 THESAURUS MANAGEMENT SCHEMA CONSIDERATIONS 7

3.1 Thesaurus Structures 7
3.1.1 Assumptions on Concepts 7
3.1.2 Modelling Thesaurus Notions 7
3.1.3 Intrathesaurus Relations 9
3.1.4 Representing Multiple Interlinked Thesauri 10
3.1.5 Interthesaurus Relations 11

3.2 Version Control and Data Consistency 11

4 THE FUNCTIONALITY OF THE UPDATE APPLICATION
PROGRAMMATIC INTERFACE FUNCTIONS 12

4.1 General Description 12

4.2 General Operations 13
4.2.1 Create a session 13
4.2.2 Release a session 14
4.2.3 Get the sis-session associated with a tms-session 14
4.2.4 Set a thesaurus name 14
4.2.5 Get current thesaurus name 14
4.2.6 Get TMS-API error message 14

4.3 Addition Operations 15
4.3.1 Create a new facet 15
4.3.2 Create a facet attribute 15
4.3.3 Create a new hierarchy 16
4.3.4 Create a hierarchy attribute 16
4.3.5 Create a new concept 17
4.3.6 Associate a new concept with terms from same thesauri 17
4.3.7 Associate a released concept with terms from same thesauri 18
4.3.8 Associate a concept with terms from other thesauri 19
4.3.9 Create a new alternative term 19
4.3.10 Create a new used for term 20
4.3.11 Create a new editor 20
4.3.12 Create a new source 20
4.3.13 Create a new word 20

April 2002/v1.1 -3- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.4 Classification Operations 21
4.4.1 Classify a new descriptor 21
4.4.2 Declassify a new descriptor 21
4.4.3 Classify a hierarchy in a facet 22
4.4.4 Declassify a hierarchy from a facet 22
4.4.5 Classify a source 22
4.4.6 Declassify a source 23

4.5 Renaming Operations 23
4.5.1 Rename a facet 23
4.5.2 Rename a hierarchy 23
4.5.3 Rename a new concept 24
4.5.4 Rename a released concept 24
4.5.5 Undo Rename a released concept 25
4.5.6 Rename a source 25
4.5.7 Rename an editor 25

4.6 Abandoning Operations 26
4.6.1 Abandon a released facet 26
4.6.2 Abandon a released hierarchy 26
4.6.3 Abandon a released concept 26
4.6.4 Undo Abandon a released facet 27
4.6.5 Undo Abandon a released hierarchy 27
4.6.6 Undo Abandon a released concept 28

4.7 Delete Operations 28
4.7.1 Delete a new facet 28
4.7.2 Delete a facet attribute 28
4.7.3 Delete a new hierarchy 29
4.7.4 Delete a hierarchy attribute 29
4.7.5 Delete a new descriptor 29
4.7.6 Delete a new descriptor’s attribute 29
4.7.7 Delete a released descriptor’s attribute 30
4.7.8 Disassociate a concept with terms from other thesauri 30
4.7.9 Move a concept to another hierarchy 30
4.7.10 Delete a broader term relation of a concept 31
4.7.11 Delete a source 32
4.7.12 Delete an editor 32

4.8 Comments Handling Operations 32
4.8.1 Get a descriptor’s comment size 32
4.8.2 Get a descriptor’s comment 33
4.8.3 Set a descriptor’s comment 33
4.8.4 Delete a descriptor’s comment 34

APPENDIX A – AN EXAMPLE 35

APPENDIX B - CHANGES FROM PREVIOUS VERSIONS 38

APPENDIX C - C++ PROGRAMMATIC INTERFACE 39

APPENDIX D – JAVA PROGRAMMATIC INTERFACE 43

REFERENCES 46

April 2002/v1.1 -4- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

1. Introduction

1.1 SIS-TMS Technical Characteristics
The SIS Thesaurus Management System (SIS-TMS) consists of a tool to develop
multilingual thesauri and a terminology server for cataloguers and for distributed
access to heterogeneous electronic collections. The distinct features of the TMS are
its capability to store, develop and access multiple thesauri and their interrelations
under one database schema, to create any relevant view thereon and to specialize
dynamically any kind of relation into new ones.

The SIS-TMS server can be integrated in a distributed, heterogeneous environment.
As a central, eventually repeated component, it can replace the cumbersome
implementation and population of thesaurus management features in collection
databases and library systems, due to access through its programmatic interface. It
further allows automatic term expansion and translation in distributed access
environment. This use requires consistency of the equivalence relations established
between thesauri. The means of consistency control provided by SIS-TMS is a unique
feature.

The SIS-TMS system is an application of the Semantic Index System, a general-
purpose object-oriented semantic network database, product of ICS-FORTH. Its
schema is based on the principles of the ISO2788 and ISO5964 standards for the
establishment and documentation of monolingual and multilingual thesauri. It is
outcome of international co-operation with cultural organizations.

1.2 SIS-TMS Programmatic Interface Technical
Characteristics

The SIS-TMS Application Programmatic Interface (hereafter TMS-API), designed
and implemented by ICS-FORTH, offers a complete set of update operators, which
implement frequently used combinations of primitive operations in respect to the SIS-
TMS schema knowledge.

This report presents the set of functions the TMS-API consists of and the
functionality of the supported functions. Note that these functions can be used to
update the SIS-TMS base (thesaurus database). To retrieve information from the
thesaurus database, the programmer should use the SIS-API functions, which are a
complete set of query operators for accessing the SIS-TMS base. For more details on
the SIS-API see “SIS - Application Programmatic Interface Reference Manual”.

SIS-TMS API libraries are available in PC versions in C++ and C (Borland 5.01
libraries and dll) and in Java. In this document we present the C version of the SIS-
TMS programmatic interface. The differences between C interface and the C++ and
Java interfaces are presented in “Appendix C - C++ Programmatic Interface” and
“Appendix D – Java Programmatic Interface”.

April 2002/v1.1 -5- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

1.3 SIS-TMS client-server model
The SIS-TMS is based on a client-server model. An application may use TMS-API
for querying and/or modifying the SIS-TMS base, as a client. A second process (the
SIS server) has to run in parallel to the application and this process gives the answers
to any question from the application, and modifies the data in the SIS-TMS base. The
server is responsible for reading and writing the SIS-TMS base files.

The main advantage of this model is that the client (or clients) need not run on the
same machine the SIS server is running. The communication between the client
process and the server process is achieved through sockets.

1.4 SIS sessions and TMS sessions
TMS-API functions can be used to update the SIS-TMS base (thesaurus database); to
retrieve information from the thesaurus database, the programmer should use the SIS-
API functions.

In order to provide real multi-threading to the clients that were using the TMS-API,
we introduced the notion of sessions as we did to the SIS-API. The application
developer that needs to provide multi-thread access to different servers or the same
server (making simultaneous queries or updates) should create multiple sessions to
implement this.

2 The programmatic scenario
An application that uses the TMS-API to update the SIS-TMS database should, in
general terms, do the following:
1. Determine the SIS-TMS database and create a sis-session to connect with the SIS

database with create_SIS_CS_Session() function.
2. Establish the connection with the SIS-TMS database with open_connection()

function.
3. Create a tms-session with create_TMS_API_Session() function associated with

the sis-session created in step 1 and set the name of the thesaurus to work with,
with SetThesaurusName() function.

4. Start a query or a transaction session to access or modify the SIS data with
begin_query() and begin_transaction() functions.

5. Set a current node with the set_current_node(node_name) function.
6. Use a set of query functions (described in “SIS - Application Programmatic

Interface Reference Manual”), or update functions (described below), which
retrieve information and collect the answer into temporary sets at the server-site or
modify information in respect to the SIS-TMS schema.

7. Repeat steps 5 and 6 and optionally performs some set operations on the temporary
sets.

8. Terminate the query or the transaction session with end_query() or
end_transaction() functions.

9. Terminate connection with the server with the close_connection() function.
10.Release the tms-session and sis-session with release_TMS_API_Session() and

release_SIS_Session() functions.

April 2002/v1.1 -6- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

3 Thesaurus Management Schema
Considerations

3.1 Thesaurus Structures
The following sections are describing the SIS Thesaurus Management System
modeling concepts as presented in "SIS - TMS: A Thesaurus Management System for
Distributed Digital Collections", published in the Proceedings of the. 2nd European
Conference, ECDL'98 (September 1998) [9].

3.1.1 Assumptions on Concepts
According to [1] one of the major purposes of a thesaurus is to "provide a map of a
given field of knowledge, indicating how concepts or ideas about concepts are related
to one another, which helps an indexer or a searcher to understand the structure of the
field.

We distinguish concepts from terms, in contrast to IS2788. Cognitive scientists have
proposed several definitions for the notion of "concept" (e.g. [2]). According to one
point of view, a concept is perceived as a set of entities, called "concept instances"
characterized as such by common agreement rather than formal reasoning on the
properties that characterize an individual entity as an instance of a concept. We adopt
this view for thesauri, considering a concept as a notion by which some people agree
to refer in a well defined manner to a set of real world objects with the same
properties, without necessarily defining properties. Consequently, certain semantic
relations between concepts are interpreted as relations between sets as will be
presented below. For more details see [3], [4].

 Following ISO2788, we regard terms as nouns or noun-phrases, by which groups of
people use to refer to certain concepts in a certain context. Due to varying groups and
contexts, concepts and terms are related many to many.

3.1.2 Modelling Thesaurus Notions
The SIS-TMS schema is extensible at run-time. New semantic relations can be
created or existing ones can be specialized. The current conceptual model of the SIS-
TMS for the representation of multiple interlinked thesauri incorporates the thesaurus
notions and intrathesaurus relations of the ISO2788 for monolingual thesauri and an
extended version of the ISO5964 interthesaurus relations [4]. In prototype versions,
this schema has been extended for the ULAN and TGN, vocabularies of the Getty
Information Institute and the Library of Congress Subject Headings. We mainly use
ISO2788 terminology for the names of the classes and relations in the SIS-TMS
schema. In the manner of semantic networks, these names are directly presented in the
user interface together with the respective data and read quite naturally.

We model Preferred Terms for indexing and Non-Preferred Terms as synonyms and
entry points for the user. In addition, Non-Preferred Terms may be used for full-text
retrieval. We adopt the notion of Descriptor of the Art & Architecture Thesaurus [5]
according to which: "a descriptor is the term that uniquely identifies the concept".
Hence a Descriptor is a term and a concept identifier in double nature. All other

April 2002/v1.1 -7- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

terms, preferred or not, are related to the concept and not further described, as we are
not interested in linguistics.

As the concept is identified by a descriptor, i.e. by a linguistic expression that best
expresses the common understanding of experts or public and it must be unique
within the context in which it has been defined, it may not be exactly the word an
expert uses. For instance, "pink (color)" and "pink (vessel)" would be good
descriptors, but experts would say "pink" in both cases. In the SIS-TMS, all terms and
descriptor names are enforced to be unique throughout the database. Terms may be
multiply related to different concepts (Descriptors), but if a good term appears to
conflict with a descriptor, the descriptor has to be renamed, i.e. usually extended for
disambiguation.

Term

Preferred Term

UsedForTermTop Term

ThesaurusExpression

ThesaurusConcept

ThesaurusNotion

Non-Preferred Term

AlternativeTerm

NodeLabel

HierarchyTerm

Descriptor

ObsoleteDescriptor ObsoleteTerm

Figure1. IsA hierarchy of the SIS-TMS C lasses of thesaurus notions

Concepts carry all the intra and interthesaurus relations that make up the semantic
structure of the thesaurus contents, they carry the administrational information, and
they can be described by scope notes and understood language independently.

Figure 1 shows the isA hierarchy of the SIS-TMS Classes of thesaurus notions. We
use in the following "abstract" for classes which are not directly instantiated, and
"abstract hook" for abstract classes, which are designed to be superclasses of classes
in future extensions. «ThesaurusNotion» is the abstract root. «ThesaurusExpression»
is the abstract hook for terms, person names, date expressions etc.
«ThesaurusConcept» is the abstract hook for concepts in the above sense, persons,
places etc. «HierarchyTerm» is the class for concept in the above sense, those that can
be generalized or specialized into broader/narrower meaning. It combines Node
Labels, or "guide terms" and descriptors. We do not distinguish functionally between
both (see e.g. [6]). «AlternativeTerm» is the complement of «Descriptor». «Topterm»
are those having no broader terms. «ObsoleteDescriptor» are abandoned concepts
(sometimes thesauri decrease, e.g. in favor of dynamic concept formation) and finally
«ObsoleteTerm» are deleted noun-phrases. The latter two serve version management
for referential integrity incremental update.

April 2002/v1.1 -8- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

3.1.3 Intrathesaurus Relations
The semantic relations in a thesaurus can be divided into intrathesaurus relations
within a coherent terminological system and interthesaurus relations between
independent terminological systems. They are used to represent relationships between
concepts and between concepts and terms, i.e. from the class HierarchyTerm to the
class HierarchyTerm or Term.

The intrathesaurus relations identified by ISO2788 are: the hierarchical relationships,
distinguishing a systematic thesaurus from an unstructured list of terms (glossary or
dictionary), associating concepts bearing broader/narrower meanings, identified by
the BT (broader term) relation, the associative relationships, relating concepts that
are not members of an equivalence set nor can they be organized in a hierarchy,
identified by the RT (related term) relation, and finally the equivalence relationship
established between preferred and non-preferred terms, considered to refer to the
same concept, and it is identified by the use and its inverse UF (used for) relations. As
it does not distinguish between terms and concept, and we reinterpret these relations
as the link between the conceptual and linguistic level. We refer in the following their
functional role and specializations.

 BT is used for semantic generalization or specialization of query terms. From a
knowledge representation approach, the BT relation carries isA semantics, and a
query term may be expanded by its narrower terms, if we ask for objects of this kind.
Consequently SIS-TMS enforces that all HierarchyTerms have a broader Term except
for TopTerms, and that the BT relation is acyclic. A Term may have multiple broader
terms in the sense of multiple supersets. Thesaurus maintainers may distinguish
between the main and alternate broader terms.

 RT is used for the detection of relevant concepts by users. It plays a role like a
general attribute category in KR systems. Dozens of useful specializations can be
found, as the "subdivisions" of ISO2709, whole-part relations, and rule-related
relations. In the latter case, machine interpretation may occur. Art & Architecture
Thesaurus team has identified more that 20 different meanings of the RT relation.

 UF (use for) can be used by users as entry points in a thesaurus. Actually most
thesauri distinguish the ALT relation to preferred terms from the UF to non-preferred
terms. The EET (European Education Thesaurus) [7] consequently regards any
translation of a concept to some language as a kind of UF.

In SIS-TMS, hierarchical association, equivalence association and associative
relation are modeled as metacategories of intrathesaurus links. These generic
categories group and control the specialization of relations to preserve compatibility
and to maintain the related global consistency rules. I.e. the application code can refer
to those for constraint enforcement and for export of data in a compatible format.
Hence the application code is robust against extensions. User defined extensions as
the above mentioned specializations of BT, RT, and UF links are substantial for
specific applications and the maintenance of their logical consistency, as well as for
the conceptual evolution of thesaurus structures into knowledge bases despite format
standardization.

Other systems allow for new user defined links, but do not relate them to existing
semantics and hence do not automatically imply standard conformant viewing,

April 2002/v1.1 -9- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

handling and constraint enforcement. Specialization of relations is a distinct feature of
the SIS-TMS.

3.1.4 Representing Multiple Interlinked Thesauri
A challenge in the SIS-TMS was the development of the conceptual model to
incorporate multiple interlinked thesauri under one database schema. For the
development of the currently implemented conceptual schema two approaches were
studied. The problems is, how to distinguish between the work of each thesaurus
editor on one side, on the other side to see the common things as common without
running continuously search routines, and on the third side to get a global view on
how the different thesauri fit together. For more details see [8].

According to the second, a global name space is made up for all terms and concepts of
one language. For each thesaurus, a separate schema is generated. Due to multiple
instantiation in SIS, these schemata can overlap conflict-free on the data. The system
tables stay limited per thesaurus. Gradual merge is possible without duplicating the
records, as the same term can participate in any thesaurus. (Terms are not regarded as
the invention of the thesaurus editor). Each thesaurus may have different semantic
structures. Links are not confused, as they belong to individual schemata. Terms of
different languages are distinguished by prefixes. Concepts of an interlingua can be
dealt likewise.

Descriptor BTBT

AATDescriptor
AATAAT BTBT MERIMEE TGMERIMEE TG

RTRT

AAT RTAAT RT MERIMEE TAMERIMEE TA

generalization /specialization

Generic Schema

MERIMEE SchemaAAT Schema

MERIMEEDescripteur

Figure 2. Subschema Creation per Thesaurus

On top of this world, one generic schema is developed as superclasses to provide
global views. "Supercategories", abstractions of links and attributes from the
individual schema as presented in the previous chapter, provide the notion of global
semantics. For each new thesaurus, the generic schema is duplicated by specialization
of its generic classes and relations into thesaurus specific ones, and the thesaurus data
are loaded under these (figure 2). For deviations in semantics, appropriate extensions
can be made. This model results in a large schema. As an SIS schema is declarative,
and not by storage allocation, no space is wasted. We selected this novel approach.

As a consequence, we may see on one common descriptor all links made by other
thesauri, achieving a kind of trivial merge. Each schema provides an isolated view of
one thesaurus, and the generic schema a unified view of all. Basically, each thesaurus
is handled as an annotation, an opinion of a group on a common term and concept
space. This method can be elaborated into much more sophistication [8].

April 2002/v1.1 -10- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

3.1.5 Interthesaurus Relations
The interthesaurus relations modeled in the SIS-TMS are an extended version of the
ISO5964 links as presented in [4]. Those refined relations are the outcome of a
discussion that took place in the framework of the AQUARELLE project between
experts in multilingual thesaurus creation and ICS-FORTH, the provider of the
multilingual thesaurus management component used in the project. The specific
problem was to embed a system of multiple independent thesauri in different
languages into a system for access to heterogeneous databases containing objects of
material culture, supporting automatic term expansion/translation under a Z39.50
protocol. The conclusion of this discussion was that ISO5964 does not define precise
enough semantics for that purpose.

We define the following relations: exact equivalence, broader equivalence, narrower
equivalence, inexact equivalence, union and intersection of concepts. A detailed
presentation of the semantics of above relations are presented in [4]. These links are
from concept to concept (HierarchyTerm), and should not confused with linguistic
translations, which use any suitable word from the other language rather than the
specific thesaurus descriptors.

Obviously equivalence relations are opinions of one group, or at least under the
responsibility of one group. Of course, good teams seek advice from each other. But
the geographical distance and other local needs hinder synchronous updates. We
therefore foresee different equivalence relations for group A from Thesaurus A to B,
than for group B from B to A. If group A or B withdraws a concept, it remains
marked as obsolete in the database, giving the other group a chance to redirect their
links later. New concepts are marked as new, and should not be referred to until
released. Suitable permissions can be set up in the SIS-TMS, so that such a database
can be maintained cooperatively without conflicts through the net.

3.2 Version Control and Data Consistency
The purpose of the version control is the information of thesaurus editors about
previous discussions and states, and the capability to incrementally update another
Collection Management System or term server with the changes done in the TMS.
Thesaurus releases are created at a slow rate, months or years. A rollback features is
therefore not necessary, backups are sufficient for that purpose. Individual changes
can be withdrawn at any time. A function is however provided, which inserts the
latest changes into the last release for «last minute changes».

Consequently, the idea of the SIS-TMS implementation is to keep in the database
only the least versioning information for the above purposes as backward differences
for scalability reasons. All other version data may be put in history logs in future
versions. Versioning is based on releases rather than dates. The "current" release is
being edited, and no history of changes is kept within it. Rather, the results of
individual changes are merged. In contrary to version control systems, always the
current version is displayed together with all registered backward changes per entity.
The latter can be filtered out. Under this perspective, we register whether
� a descriptor has been introduced (a new concept is described)

April 2002/v1.1 -11- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

� an existing descriptor has been abandoned (the concept is regarded inappropriate
for classification or should be composed dynamically from other concepts)

� an existing descriptor is renamed
� any semantic information around a descriptor has changed.

We distinguish between operations on released concepts and on unreleased. In the
unreleased, the user can introduce descriptors, which are classified as "new
descriptor". He/she can perform all operations on descriptors and undo them.

The operations on released concepts are constraint, because they contain data that
have been communicated to other systems and may have been used for indexing.
Introduction of descriptors as well as deletions is not permitted. A descriptor can be
abandoned by the following procedure: It is classified as "obsolete descriptor" and its
broader/narrower associations to the others are deleted but it remains a member of
the term list of its hierarchy, retaining the context in which it has been defined.
Further, the «gap» in the hierarchy is «closed» by drawing BT relations between the
narrower terms of the obsolete descriptor and its broader terms. We do not constrain
any changes in the associated information, semantic and administrational links and
attributes, as this is not necessary to keep other systems up-to-date or to avoid
dangling references.

If editors regard the noun phrase, which identifies a descriptor, as inappropriate for
the semantics of the concept, or it is going to cause name conflicts, it can be renamed.
Renaming an object in SIS does not alter its system identifier and its properties
remain attached to it. SIS-TMS maintains uniqueness of all term-names in the system.
Whereas ALT and UF terms can be deleted at any time. Released descriptor names,
which come out of use, become «obsolete terms». Further, for each release, links are
maintained where the names have gone to. The complete algorithm is not trivial, as
within one release all rename actions must be merged in order to be unique, and
obsolete names may be reused as ALT or UF terms. Currently, following the AAT
philosophy, we do not allow a concept (descriptor) to refer another descriptor as UF,
but we expect in that case, that the respective descriptor is renamed to disambiguate it
from the other concept.

4 The functionality of the Update Application
Programmatic Interface functions

4.1 General Description
The TMS-API provides a set of functions used to make updates in the database in
respect to the SIS-TMS schema. The operations that can be performed are:

• General operations
• Addition operations
• Renaming operations
• Undo operations
• Abandoning operations
• Deletion operations
• Comment handling operations

April 2002/v1.1 -12- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

The relation between the above groups of operations is guided by the following
principles:
♦ For each allowed operation there is an inverse function to undo its effect. So any

series of changes can be taken back in inverse order. This holds as long as no new
version (release) is issued.

♦ There is no registration of undone changes.
♦ At the issuing of a new release, the effective changes on concepts are registered.
♦ In the sequence, taking them back, is a change in itself, an "abandon" operation.

The operations on released concepts are constraint, because they contain data that
have been communicated to other systems and may have been used for indexing.
Deletion of descriptors is not permitted. A descriptor can be abandoned: classified as
"obsolete descriptor" and its broader/narrower associations to the others are deleted
but it remains a member of the term list of its hierarchy, retaining the context in which
it has been defined. Renaming is also constrained to released concepts: the system
keeps the renaming history of a released concept. The operations on released concepts
can again be undone with other special operations as long as no release is issued.

In order to execute updates on a database a transaction session must be initiated. A
transaction session can either be initiated directly or from within a query session.
When a transaction session is in progress a write lock is applied to the database and
only the writing client can access it. A transaction session begins with the
begin_transaction() function and ends with either the end_transaction() function
(commits changes) or with the abort_transaction() function (does not commit
changes). When the transaction session is initiated from within a query session, on
termination of the transaction session the query session continues, and thus a read
lock exists on the database. In order to release the read lock end the query session by
calling end_query().

The functions presented below return TMS_APIFail(-1) on error and
TMS_APISucc(0) on success.

NOTE: In the following sections all functions described take as first argument the
TMSsessionID of the session (access point to the database) that they are quering or
updating.

4.2 General Operations

4.2.1 Create a session
Operation : int create_TMS_API_Session(int* TMSsessionID, int SISsessionID)

Input : TMSsessionID, SISsessionID

This operation creates a session for operating on a thesaurus database, designated by
the SISsessionsID argument. It associates the tms-session created with a sis-session.
The operation fails in the following case:

• Given sis-session is not valid.

Example:
int sis_session, t
create_SIS_Session(&sis_session,);

ms_session;

April 2002/v1.1 -13- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

create_TMS_API_Session(&tms_session, sis_session);

4.2.2 Release a session
Operation : int release_TMS_API_session(int TMSsessionID)

Input : TMSsessionID

This operation releases a session designated by the TMSsessionID argument. The
operation fails in the following case:

• Given tms-session is not valid.

Example:
release_TMS_API_Session(tms_session);

4.2.3 Get the sis-session associated with a tms-session
Operation : void get_associated_SIS_Session(int TMSsessionID, int* SISsessionID)

Input : TMSsessionID, SISsessionID

This operation returns the sis-session ID (in argument SISsessionID), which is
associated with the specified tms-session (TMSsessionID). The operation fails in the
following case:

• Given tms-session is not valid and returns –1 in SISsessionID.

Example:
get_associated_SIS_Session(tms_session, &sis_session);

4.2.4 Set a thesaurus name
Operation : int SetThesaurusName(int TMSsessionID, char *ThesaurusName)

Input : TMSsessionID, ThesaurusName

This operation sets the name of the thesaurus, which TMS-API will work with. The
operation fails in the following case:

• Given thesaurus name is not the name of any existing thesaurus.

Example:
SetThesaurusName("MERIMEE");

4.2.5 Get current thesaurus name
Operation : void GetThesaurusName (int TMSsessionID, char ThesaurusName)

Input : TMSsessionID, ThesaurusName

This operation returns in ThesaurusName the current name of the thesaurus, which
TMS-API works with.

Example:
l_name thesaurusName;
GetThesaurusName(tms_session, thesaurusName);

4.2.6 Get TMS-API error message
Operation : char *GetTMS_APIErrorMessage(int TMSsessionID)

April 2002/v1.1 -14- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Input : TMSsessionID

This operation returns the reason of failure of last unsuccessful TMS-API function
call.

Example:
fprintf(stderr, "%s", GetTMS_APIErrorMessage(tms_session));

4.3 Addition Operations

4.3.1 Create a new facet
Operation : int CreateFacet(int TMSsessionID, char *FacetName)

Input : TMSsessionID, FacetName

This operation creates a new facet. The operation fails in the following cases:
• A facet with the same name already exists.
• Input FacetName does not contain the correct prefix for a facet of

currently used thesaurus.
Example:
CreateFacet(tms_session, "MERIMEEClass`test_api_facet");

4.3.2 Create a facet attribute
Operation : int CreateFacetAttribute(int TMSsessionID, char *linkName,

char *facetName, cm_value *toValue, int catSet)

Input : TMSsessionID, LinkName, facetName, toValue, catSet

This operation creates a new attribute for a facet. linkName is the name of the new
attribute (‘\0’ for unnamed), facetName is the from-value of the attribute, toValue its
to-value and catSet the set with the categories of the attribute. If catSet is –1 then no
categories are used. The operation fails in the following cases:

• facetName is not the name of any existing facet of currently used
thesaurus.

• The given catSet contains categories which are not allowed to be used for
the creation of a facet attribute. Available categories for the creation of a
facet attribute:

Category from-class Category name
Facet letter_code

Example:
cm_value toValue;
assign_string(&toValue, ”letter_code_to_value");
int catSet;
catSet = set_get_new();
reset_name_scope();
set_current_node(“Facet”);
set_current_node(“letter_code”);
set_put(catSet);
CreateFacetAttribute(tms_session, "my_letter_code","MERIMEEClass`
test_api_facet", &toValue, catSet);
free(toValue.value.s);
free_set(catSet);

April 2002/v1.1 -15- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.3.3 Create a new hierarchy
Operation : int CreateHierarchy(int TMSsessionID, char *HierarchyName, char

*FacetName)

Input : TMSsessionID, HierarchyName, FacetName

The hierarchy is added in the knowledge base and classified in the specified facet.
The top term of the hierarchy is created and appropriately associated with it. The
operation fails in the following cases:

• A hierarchy with the same name already exists.
• FacetName is not the name of any existing facet of currently used

thesaurus.
• Input HierarchyName does not contain the correct prefix for a hierarchy of

currently used thesaurus.

Example:
CreateHierarchy(tms_session, "MERIMEEClass`test_api_hier",
"MERIMEEClass`test_api_facet");

4.3.4 Create a hierarchy attribute
Operation : int CreateHierarchyAttribute(int TMSsessionID, char *linkName,

char *hierarchyName, cm_value *toValue, int catSet)

Input : TMSsessionID, linkName, hierarchyName, toValue, catSet

This operation creates a new attribute for a hierarchy. linkName is the name of the
new attribute (‘\0’ or NULL for unnamed), hierarchyName is the from-value of the
attribute, toValue its to-value and catSet the set with the categories of the attribute. If
catSet is –1 then no categories are used. The operation fails in the following cases:

• hierarchyName is not the name of any existing hierarchy of currently used
thesaurus.

• The given catSet contains categories which are not allowed to be used for
the creation of a hierarchy attribute. Available categories for the creation
of a hierarchy attribute:

Category from-class Category name
Facet letter_code

Example:
cm_value toValue;
assign_string(&toValue, "letter_code_to_value");
int catSet;
catSet = set_get_new();
reset_name_scope();
set_current_node("Facet");
set_current_node("letter_code");
set_put(catSet);
CreateHierarchyAttribute(tms_session, "my_letter_code",
"MERIMEEClass` test_api_hier", &toValue, catSet);
free(toValue.value.s);
free_set(catSet);

April 2002/v1.1 -16- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.3.5 Create a new concept
Operation : int CreateDescriptor(int TMSsessionID, char * DescriptorName,

char * BroaderTerm)

Input : TMSsessionID, DescriptorName, BroaderTerm

This operation creates a new descriptor. The descriptor is added in the knowledge
base and is associated with the given broader term with a BT relation. It is also
classified in its broader term hierarchies. The operation fails in the following cases:

• A descriptor with the given name already exists
• The given broader term does not exist.
• The given broader term is not a descriptor.
• Input DescriptorName does not contain the correct prefix for a descriptor

of currently used thesaurus.

Example:
CreateDescriptor(tms_session, "TermeFr`test_descriptor", "TermeFr`
ALLEE");

4.3.6 Associate a new concept with terms from same thesauri
Operation : int CreateNewDescriptorAttribute (int TMSsessionID, char

*linkName, char * descriptorName, cm_value *toValue, int catSet)

Input : TMSsessionID, linkName, descriptorName, toValue, catSet

This operation creates a new attribute for a new concept. linkName is the name of the
new attribute (‘\0’ or NULL for unnamed), descriptorName is the from-value of the
attribute, toValue its to-value and catSet the set with the categories of the attribute. If
catSet is –1 then no categories are used. The operation fails in the following cases:

• descriptorName is not the name of any existing new concept of currently
used thesaurus.

• The given catSet contains categories which are not allowed to be used for
the creation of a new concept attribute. Available categories for the
creation of a new concept attribute (<thes_nameU> and <thes_nameL> are
the upper and lower case names of the currently selected thesaurus, for
example: MERIMEE, merimee):

Category from-class Category name
<thes_ nameU>HierarchyTerm <thes_ nameU>_ALT
<thes_ nameU>HierarchyTerm <thes_nameL>_display
<thes_ nameU>HierarchyTerm <thes_nameL>_editor
<thes_ nameU>HierarchyTerm <thes_nameL>_found_in
<thes_ nameU>HierarchyTerm <thes_nameL>_modified
<thes_ nameU>HierarchyTerm <thes_nameL>_found_in
<thes_ nameU>HierarchyTerm <thes_ nameU>_RT
<thes_ nameU>HierarchyTerm <thes_ nameU>_UF

<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_EN
<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_GR
<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_IT

<thes_ nameU>HierarchyTerm <thes_nameL>_created
Example:

April 2002/v1.1 -17- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

cm_value toValue;
assign_string(&toValue, "TermeFr`CELLIER");
int catSet;
catSet = set_get_new();
reset_name_scope();
set_current_node("MERIMEEHierarchyTerm");
set_current_node("MERIMEE_ALT");
set_put(catSet);
CreateNewDescriptorAttribute (tms_session, "myALT",
"TermeFr`test_descriptor", &toValue, catSet);
free(toValue.value.s);
free_set(catSet);

4.3.7 Associate a released concept with terms from same thesauri
Operation : int CreateDescriptorAttribute (int TMSsessionID, char

*linkName, char * descriptorName, cm_value *toValue, int catSet)

Input : TMSsessionID, linkName, descriptorName, toValue, catSet

This operation creates a new attribute for a released concept. linkName is the name of
the new attribute (‘\0’ or NULL for unnamed), descriptorName is the from-value of
the attribute, toValue its to-value and catSet the set with the categories of the
attribute. If catSet is –1 then no categories are used. The operation fails in the
following cases:

• descriptorName is not the name of any existing released concept of
currently used thesaurus.

• The given catSet contains categories which are not allowed to be used for
the creation of a new concept attribute. Available categories for the
creation of a new concept attribute (<thes_nameU> and <thes_nameL> are
the upper and lower case names of the currently selected thesaurus, for
example: MERIMEE, merimee):

Category from-class Category name
<thes_ nameU>HierarchyTerm <thes_ nameU>_ALT
<thes_ nameU>HierarchyTerm <thes_nameL>_display
<thes_ nameU>HierarchyTerm <thes_nameL>_editor
<thes_ nameU>HierarchyTerm <thes_nameL>_found_in
<thes_ nameU>HierarchyTerm <thes_nameL>_modified
<thes_ nameU>HierarchyTerm <thes_nameL>_found_in
<thes_ nameU>HierarchyTerm <thes_ nameU>_RT
<thes_ nameU>HierarchyTerm <thes_ nameU>_UF

<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_EN
<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_GR
<thes_ nameU>ThesaurusConcept <thes_ nameU>_translation, to_IT

Example:
cm_value toValue;
assign_string(&toValue, "TermeFr`CELLIER");
int catSet;
catSet = set_get_new();
reset_name_scope();
set_current_node("MERIMEEHierarchyTerm");
set_current_node("MERIMEE_ALT");
set_put(catSet);

April 2002/v1.1 -18- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

CreateDescriptorAttribute(tms_session, "myALT", "TermeFr`ABREUVOIR",
&toValue, catSet);
free(toValue.value.s);
free_set(catSet);

4.3.8 Associate a concept with terms from other thesauri
Operation : int CreateInterThesRelation(int TMSsessionID, char * FromTerm,

char * Category, char * ToTerm)

Input : TMSsessionID, FromTerm, Category, ToTerm

This operation adds inter-thesaurus links to a descriptor. An inter-thesaurus link of
type Category is created to associate the FromTerm with the ToTerm. The ToTerm
can also be a collective concept: it can be a concept to express a union or an
intersection of concepts of the target-thesaurus. The appropriate broader term links
are constructed so as to associate the collective concept with its component concepts
using the following syntax:

concept_name1 + concept_name2 (for union)
concept_name1 & concept_name2 (for intersection)

The operation fails in the following cases:

◊ In case the ToTerm is not a collective concept
• The ToTerm does not exist. In this case, the operation fails because it is not

legal to introduce new concepts in the target-thesaurus.
• The ToTerm is not a descriptor.

◊ In case the ToTerm is a collective concept.
• The components of the ToTerm do not exist in the target-thesaurus. In this

case the operation fails because it is not legal to introduce new concepts in
the target-thesaurus.

• The components of the ToTerm are not descriptors.

Example:
CreateInterThesRelation(tms_session, "TermeFr`BERGERIE",
"MERIMEE_exact_equivalence , to_RCHME", "EnTerm`garden & lake");

4.3.9 Create a new alternative term
Operation : int CreateAlternativeTerm (int TMSsessionID, char * term)

Input : TMSsessionID, term

This operation creates a new alternative term. The term is added in the knowledge
base and is instantiated under the AlternativeTerm class of the current thesaurus (for
example MERIMEEAlternativeTerm). The operation fails in the following cases:

• A term with the given name already exists
• Input term does not contain the correct prefix for a term of currently used

thesaurus.

Example:
CreateAlternativeTerm (tms_session, "TermeFr`myAlternativeTerm");

April 2002/v1.1 -19- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.3.10 Create a new used for term
Operation : int CreateUsedForTerm (int TMSsessionID, char * term)

Input : TMSsessionID, term

This operation creates a new used for term. The term is added in the knowledge base
and is instantiated under the UsedForTerm class of the current thesaurus (for example
MERIMEE UsedForTerm). The operation fails in the following cases:

• A term with the given name already exists
• Input term does not contain the correct prefix for a term of currently used

thesaurus.

Example:
CreateUsedForTerm (tms_session, "TermeFr`myUsedForTerm");

4.3.11 Create a new editor
Operation : int CreateEditor (int TMSsessionID, char * editor)

Input : TMSsessionID, editor

This operation creates a new editor. The editor is added in the knowledge base and is
instantiated under the Editor class of the current thesaurus (for example MERIMEE
Editor). The operation fails in the following cases:

• An editor with the given name already exists
• Input editor does not contain the correct prefix for an editor of currently

used thesaurus (Person`).

Example:
CreateEditor(tms_session, "Person`myEditor");

4.3.12 Create a new source
Operation : int CreateSource(int TMSsessionID, char * source)

Input : TMSsessionID, source

This operation creates a new source. The source is added in the knowledge base and is
instantiated under the Source class. The operation fails in the following cases:

• A source with the given name already exists
• Input source does not contain the correct prefix for a source (Literature`).

Example:
CreateSource(tms_session, "Literature`mySource");

4.3.13 Create a new word
Operation : int CreateAmericanWord (int TMSsessionID, char * word)

int CreateDanishWord(int TMSsessionID, char * word)
int CreateCatalanWord(int TMSsessionID, char * word)
int CreateSpanishWord(int TMSsessionID, char * word)
int CreatePortugueseWord(int TMSsessionID, char * word)
int CreateGermanWord(int TMSsessionID, char * word)
int CreateGreekWord(int TMSsessionID, char * word)
int CreateItalianWord(int TMSsessionID, char * word)

April 2002/v1.1 -20- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

int CreateFrenchWord(int TMSsessionID, char * word)
int CreateEnglishWord(int TMSsessionID, char * word)

Input : TMSsessionID, word

These operations create a new word. The word is added in the knowledge base and is
instantiated under the AmericanWord, DanishWord, CatalanWord, SpanishWord,
PortugueseWord, GermanWord, GreekWord, ItalianWord, FrenchWord, or
EnglishWord class. The operation fails in the following case:

• A word with the given name already exists
Example:
CreateGreekWord(tms_session, “myGreekWord”);

4.4 Classification Operations

4.4.1 Classify a new descriptor
Operation : int ClassifyNewDescriptor(int TMSsessionID, char *descriptorName,

char *className)

Input : TMSsessionID, descriptorName, className

This operation classifies a new descriptor. The descriptor is classified under the given
className class. The operation fails in the following cases:

• descriptorName is not the name of any existing new descriptor of currently
used thesaurus.

• className is not one of the allowed classes for new descriptors
classification. Available classes for the classification of a new descriptor
(<thes_nameU> is the upper case name of the currently selected thesaurus,
for example: MERIMEE):

1. <thes_nameU>GuideTerm

Example:
ClassifyNewDescriptor(tms_session, "TermeFr`test_desciptor",
"MERIMEEGuideTerm");

4.4.2 Declassify a new descriptor
Operation : int DeClassifyNewDescriptor(int TMSsessionID, char *descriptorName,

char *className)

Input : TMSsessionID, descriptorName, className

This operation declassifies a new descriptor. The descriptor is declassified by the
given className class. The operation fails in the following cases:

• descriptorName is not the name of any existing new descriptor of currently
used thesaurus.

• className is not one of the allowed classes for new descriptors
declassification. Available classes for the declassification of a new
descriptor (<thes_nameU> is the upper case name of the currently selected
thesaurus, for example: MERIMEE):

1. <thes_nameU>GuideTerm

April 2002/v1.1 -21- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Example:
DeClassifyNewDescriptor(tms_session,"TermeFr`test_desciptor","MERIMEE
GuideTerm");

4.4.3 Classify a hierarchy in a facet
Operation : int ClassifyHierarchyInFacet(int TMSsessionID, char * hierarchyName,

char * facetName)

Input : TMSsessionID, hierarchyName, facetName

This operation classifies a hierarchy in a facet. The hierarchy is classified under the
given facetName facet. The operation fails in the following cases:

• hierarchyName is not the name of any existing hierarchy of currently used
thesaurus.

• facetName is not the name of any existing facet of currently used
thesaurus.

Example:
ClassifyHierarchyInFacet(tms_session,
"MERIMEEClass`test_api_hier", "MERIMEEClass`<architecture
scolaire>");

4.4.4 Declassify a hierarchy from a facet
Operation : int DeClassifyHierarchyFromFacet(int TMSsessionID, char

*hierarchyName, char * facetName)

Input : TMSsessionID, hierarchyName, facetName

This operation declassifies a hierarchy from a facet. The hierarchy is declassified by
the given facetName facet. The operation fails in the following cases:

• hierarchyName is not the name of any existing hierarchy of currently used
thesaurus.

• facetName is not the name of any existing facet of currently used
thesaurus.

Example:
DeClassifyHierarchyFromFacet(tms_session,
"MERIMEEClass`test_api_hier", "MERIMEEClass`<architecture
scolaire>");

4.4.5 Classify a source
Operation : int ClassifySource(int TMSsessionID, char *sourceName, char

*className)

Input : TMSsessionID, sourceName, className

This operation classifies a source. The source is classified under the given className
class. The operation fails in the following cases:

• sourceName is not the name of any existing source of currently used
thesaurus.

• className is not the class Source or one of its subclasses (Citation, Serial,
or Monograph)

Example:
ClassifySource(tms_session, "Literature`mySource", "Citation");

April 2002/v1.1 -22- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.4.6 Declassify a source
Operation : int DeClassifySource(int TMSsessionID, char * sourceName, char

*className)

Input : TMSsessionID, sourceName, className

This operation declassifies a source. The source is declassified by the given
className class. The operation fails in the following cases:

• sourceName is not the name of any existing source of currently used
thesaurus.

• className is not the class Source or one of its subclasses (Citation, Serial,
or Monograph)

Example:
DeClassifySource(tms_session, "Literature`mySource", "Citation");

4.5 Renaming Operations

4.5.1 Rename a facet
Operation : int RenameFacet (int TMSsessionID, char * OldFacetName, char *

NewFacetName)

Input : TMSsessionID, OldFacetName, NewFacetName

This operation renames an existing facet. The operation fails in the following cases:
• A facet with the same new name already exists.
• OldFacetName is not the name of any existing facet of currently used

thesaurus.
• The top term with the same new name already exists.
• Input NewFacetName does not contain the correct prefix for a facet of

currently used thesaurus.

Example:
RenameFacet(tms_session, "MERIMEEClass`test_api_facet",
"MERIMEEClass`new_test_api_facet");

4.5.2 Rename a hierarchy
Operation : int RenameHierarchy(int TMSsessionID, char *OldHierarchyName,

char * NewHierarchyName)

Input : TMSsessionID, OldHierarchyName, NewHierarchyName

The hierarchy and its top term are appropriately renamed given the new hierarchy
name. The operation fails in the following cases:

• A hierarchy with the same new name already exists
• OldHierarchyName is not the name of any existing hierarchy of currently

used thesaurus.
• The top term with the same new name already exists.
• Input NewHierarchyName does not contain the correct prefix for a

hierarchy of currently used thesaurus.

April 2002/v1.1 -23- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Example:
RenameHierarchy(tms_session,"MERIMEEClass`test_api_hier","MERIMEEClas
s`new_test_api_hier");

4.5.3 Rename a new concept
Operation : int RenameNewDescriptor (int TMSsessionID, char * OldDescriptorName,

char * NewDescriptorName)

Input : TMSsessionID, OldDescriptorName, NewDescriptorName

This operation renames an existing descriptor. The operation fails in the following
cases:

• A descriptor with the same new name already exists
• OldDescriptorName is not the name of any existing descriptor of currently

used thesaurus.
• Input NewDescriptorName does not contain the correct prefix for a

descriptor of currently used thesaurus.

Example:
RenameNewDescriptor(tms_session, "TermeFr`test_descriptor",
"TermeFr`new_test_descriptor");

4.5.4 Rename a released concept
Operation : int RenameDescriptor(int TMSsessionID, RenameNamesCouples

NameCouples)

Input : TMSsessionID, NameCouples which is an array of structures:
struct RenameNamesCouple {
 char oldName[LOGINAM_SIZE];
 char newName[LOGINAM_SIZE];
};
To end the rename chain the oldName of the last structure must set to 0.

This operation renames an existing descriptor. Cyclic and linear renames can be
performed with the specified operation. The following cases of renaming can be
performed:

• TermA renamed to TermB , TermB is a not yet existing name
• TermA renamed to TermB. In case TermB is an existing name not belonging

in the ObsoleteTerm class of the current thesaurus, the user is asked to give
a new name for TermB. The user can give TermA (performing a cyclic
rename) or a not yet existing name. The number of renames performed can
be arbitrary.

Example:
RenameNamesCouples nameCouples;
strcpy(nameCouples[0].oldName, "TermeFr`COLOMBIER");
strcpy(nameCouples[0].newName, "TermeFr`newCOLOMBIERname");
*(nameCouples[1].oldName) = ‘\0’;
RenameDescriptor(tms_session, nameCouples);

April 2002/v1.1 -24- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.5.5 Undo Rename a released concept
Operation : int UndoRenameDescriptor(int TMSsessionID, char *DescriptorName)

Input : TMSsessionID, DescriptorName

This operation cancels the “rename descriptor” operation. The necessary renames are
performed so that the knowledge base returns to its previous state (before the renames
took place). The operation fails in the following case:

• Used for links are targeting to one of the terms participating in the
sequence of terms to be renamed. In this case the user is informed and the
“gave name to” links should be deleted.

Example:
UndoRenameDescriptor(tms_session, "TermeFr`newCOLOMBIERname");

4.5.6 Rename a source
Operation : int RenameSource(int TMSsessionID, char * sourceName, char

*newSourceName)

Input : TMSsessionID, sourceName, newSourceName

This operation renames an existing source. The operation fails in the following cases:
• A source with the same new name already exists
• sourceName is not the name of any existing source of currently used

thesaurus.
• Input newSourceName does not contain the correct prefix for a source of

currently used thesaurus (for example “Literature`” for thesaurus
MERIMEE).

Example:
RenameSource(tms_session, "Literature`mySource",
"Literature`mySrc");

4.5.7 Rename an editor
Operation : int RenameEditor(int TMSsessionID, char * editorName, char

*newEditorName)

Input : TMSsessionID, editorName, newEditorName

This operation renames an existing editor. The operation fails in the following cases:
• An editor with the same new name already exists
• editorName is not the name of any existing editor of currently used

thesaurus.
• Input newEditorName does not contain the correct prefix for an editor of

currently used thesaurus (for example “Person`” for thesaurus
MERIMEE).

Example:
RenameEditor(tms_session, "Person`myEditor", "Person`myNewEditor");

April 2002/v1.1 -25- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.6 Abandoning Operations

4.6.1 Abandon a released facet
Operation : int AbandonFacet(int TMSsessionID, char * FacetName)

Input : TMSsessionID, FacetName

This operation abandons a facet. The facet is classified as "obsolete". The operation
fails in the following cases:

• FacetName is not the name of any existing released facet of currently used
thesaurus.

• FacetName is the name of an already abandoned facet.

Example:
AbandonFacet(tms_session, "MERIMEEClass`<architecture domestique>");

4.6.2 Abandon a released hierarchy
Operation : int AbandonHierarchy(int TMSsessionID, char *HierarchyName)

Input : TMSsessionID, HierarchyName

This operation abandons a hierarchy. The hierarchy is classified as "obsolete". The
operation fails in the following cases:

• HierarchyName is not the name of any existing released hierarchy of
currently used thesaurus.

• HierarchyName is the name of an already abandoned hierarchy.

Example:
AbandonHierarchy(tms_session, "MERIMEEClass`<architecture
militaire>");

4.6.3 Abandon a released concept
Operation : int AbandonDescriptor(int TMSsessionID, char *DescriptorName)

Input : TMSsessionID, DescriptorName

This operation abandons a descriptor. In this case the descriptor is classified as an
"Obsolete Descriptor". It remains classified in the hierarchy it belongs to but is
detached from it. That is all it’s broader and narrower term relations are deleted and
appropriate broader term relations are established between its narrower and broader
terms as shown in figure 3. The operation fails in the following cases:

April 2002/v1.1 -26- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

• Related, Used For and Alternative term links are originating from or
targeted to the descriptor.

• Interthesauri links are originating from the descriptor.
• DescriptorName is the name of an already abandoned descriptor.

A

B

C D

E

F

A

B

D

E

F
(a) (b)

In (a) descriptor C belongs in hierarchy H and has the broader terms D, E and F
and the narrower terms A and B.
In (b) descriptor C is characterized as “Obsolete Descriptor” and is detached from
hierarchy H. Its broader and narrower term relations are deleted and appropriate
broader term relations (dashed arrows) are established between its narrower and
broader terms.

Figure 3. Schema of operation "Abandon Descriptor"

Example:
AbandonDescriptor(tms_session, "TermeFr`CELLIER");

4.6.4 Undo Abandon a released facet
Operation : int UndoAbandonFacet(int TMSsessionID, char *FacetName)

Input : TMSsessionID, FacetName

This operation cancels the “abandon descriptor” operation for the given facet. In this
case the facet is no longer classified as an obsolete.
 The operation fails in the following case:

• The facet is not an abandoned facet of currently used thesaurus.

Example:
UndoAbandonFacet(tms_session, "MERIMEEClass`<architecture
domestique>");

4.6.5 Undo Abandon a released hierarchy
Operation : int UndoAbandonHierarchy(int TMSsessionID, char *HierarchyName)

Input : TMSsessionID, HierarchyName

This operation cancels the “abandon descriptor” operation for the given hierarchy. In
this case the hierarchy is no longer classified as an obsolete. The operation fails in the
following case:

• The hierarchy is not an abandoned hierarchy of currently used thesaurus.

April 2002/v1.1 -27- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Example:
UndoAbandonHierarchy(tms_session,"MERIMEEClass`<architecture
militaire>");

4.6.6 Undo Abandon a released concept
Operation : int UndoAbandonDescriptor(int TMSsessionID, char *DescriptorName,

char *BroaderTerm, char *HierarchyName)

Input : TMSsessionID, DescriptorName, BroaderTerm, HierarchyName

This operation cancels the “abandon descriptor” operation for the given descriptor of
the specific hierarchy. In this case the descriptor is no longer classified as an
"Obsolete Descriptor", and a broader term relation is established with the given
broader term. The descriptor and the given broader term must belong to the same
hierarchy. The operation fails in the following cases:

• The DescriptorName is not an abandoned descriptor of currently used
thesaurus.

• The descriptor does not belong to the specific hierarchy.
• The given broader term is not a descriptor.
• The given broader term is an obsolete descriptor.
• The descriptor and the broader term do not belong to the same hierarchy.

Example:
UndoAbandonDescriptor(tms_session, "TermeFr`CELLIER",
"TermeFr`ABREUVOIR", "MERIMEEClass`<architecture agricole>");

4.7 Delete Operations

4.7.1 Delete a new facet
Operation : int DeleteFacet (int TMSsessionID, char *FacetName)

Input : TMSsessionID, FacetName

This operation deletes a new facet. The operation fails in the following case:
• FacetName is not the name of any existing new facet of currently used

thesaurus.

Example:
DeleteFacet(tms_session, "MERIMEEClass`test_api_facet");

4.7.2 Delete a facet attribute
Operation : Int DeleteFacetAttribute(int TMSsessionID, int linkSysid, char

*facetName)

Input : TMSsessionID, linkSysid, facetName

This operation deletes a facet’s attribute. The operation fails in the following cases:
• facetName is not the name of any existing facet of currently used

thesaurus.
• linkSysid is not the sysid of any existing link pointing from given facet.

April 2002/v1.1 -28- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Example:
DeleteFacetAttribute(tms_session,1052,"MERIMEEClass`test_api_facet");

4.7.3 Delete a new hierarchy
Operation : Int DeleteHierarchy(int TMSsessionID, char *HierarchyName)

Input : TMSsessionID, HierarchyName

The new hierarchy and its top term are deleted from the knowledge base. The
operation fails in the following cases:

• One or more descriptors are classified in the specific hierarchy.
• HierarchyName is not the name of any existing new hierarchy of currently

used thesaurus.
• There are links targeting to the top term of the hierarchy originating from

other descriptors.

Example:
DeleteHierarchy(tms_session, "MERIMEEClass`test_api_hier");

4.7.4 Delete a hierarchy attribute
Operation : int DeleteHierarchyAttribute (int TMSsessionID, int linkSysid,

char * HierarchyName)

Input : TMSsessionID, linkSysid, HierarchyName

This operation deletes a hierarchy’s attribute. The operation fails in the following
cases:

• HierarchyName is not the name of any existing hierarchy of currently used
thesaurus.

• linkSysid is not the sysid of any existing link pointing from given
hierarchy.

Example:
DeleteHierarchyAttribute(tms_session,1052,"MERIMEEClass`test_api_hier
");

4.7.5 Delete a new descriptor
Operation : Int DeleteNewDescriptor (int TMSsessionID, char * DescriptorName)

Input : TMSsessionID, DescriptorName

This operation deletes a new descriptor. The operation fails in the following case:
• DescriptorName is not the name of any existing new descriptor of currently

used thesaurus.

Example:
DeleteNewDescriptor(tms_session, "TermeFr`test_descriptor");

4.7.6 Delete a new descriptor’s attribute
Operation : int DeleteNewDescriptorAttribute (int TMSsessionID, int linkSysid,

April 2002/v1.1 -29- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

char * DescriptorName)

Input : TMSsessionID, linkSysid, DescriptorName

This operation deletes a new descriptor’s attribute. The operation fails in the
following cases:

• DescriptorName is not the name of any existing new descriptor of currently
used thesaurus.

• linkSysid is not the sysid of any existing link pointing from given
descriptor.

Example:
DeleteNewDescriptorAttribute(tms_session,1054,"TermeFr`test_descr");

4.7.7 Delete a released descriptor’s attribute
Operation : int DeleteDescriptorAttribute (int TMSsessionID, int linkSysid, char

*DescriptorName)

Input : TMSsessionID, linkSysid, DescriptorName

This operation deletes a released descriptor’s attribute. The operation fails in the
following cases:

• DescriptorName is not the name of any existing released descriptor of
currently used thesaurus.

• linkSysid is not the sysid of any existing link pointing from given
descriptor.

Example:
DeleteDescriptorAttribute(tms_session, 8389224, "TermeFr`ALLEE");

4.7.8 Disassociate a concept with terms from other thesauri
Operation : int DeleteInterThesRelation(int TMSsessionID, char *FromTerm,

char *Category, char *ToTerm)

Input : TMSsessionID, FromTerm, Category, ToTerm

This operation deletes interthesaurus links to a descriptor. The interthesaurus link of
the given category associating the FromTerm with the ToTerm is deleted. In case the
ToTerm is a collective concept, then it is deleted only when it is not associated with
other descriptors. The operation fails in the following cases:

• A link from FromTerm to ToTerm of type Category does not exist.
• The ToTerm does not exist.
• FromTerm is not the name of any existing descriptor of currently used

thesaurus.

Example:
DeleteInterThesRelation(tms_session, "TermeFr`BERGERIE",
"MERIMEE_exact_equivalence , to_RCHME", "EnTerm`garden & lake");

4.7.9 Move a concept to another hierarchy
Operation : int MoveToHierarchy(int TMSsessionID, char *TargetTerm, char

April 2002/v1.1 -30- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

*CurrentHierarchy, char *NewHierarchy, char *NewBTterm, int Option)

Input : TMSsessionID, TargetTerm, CurrentHierarchy, NewHierarchy,
NewBTterm, Option

Depending on the value of input Option:
• MOVE_NODE_ONLY

In this case, the concept is detached from the selected hierarchy (as in the case of
"Abandon Descriptor" and is classified in the new hierarchy. A broader term
relation is established between the concept and the given broader term.

• MOVE_NODE_AND_SUBTREE
In this case, the concept and its subtree of broader term relations are detached
from the selected hierarchy and are reclassified in the new hierarchy. A broader
term relation is established between the concept and the given broader term.

• CONNECT_NODE_AND_SUBTREE
In this case, the concept and its subtree of broader term relations are NOT
detached from the selected hierarchy (as in previous case) and are multiply
classified in the new hierarchy. A broader term relation is established between the
concept and the given broader term.

The operation fails in the following cases:
• The broader term relation that is going to be added creates a directed cycle

of broader term relations.
• TargetTerm or NewBTterm is not the name of any existing descriptor of

currently used thesaurus.
• CurrentHierarchy or NewHierarchy is not the name of any existing

hierarchy of currently used thesaurus.

Example:
MoveToHierarchy(tms_session, "TermeFr`ENTREPOT AGRICOLE",
"MERIMEEClass`<architecture agricole>", "MERIMEEClass`<architecture
artisanale>", "TermeFr`BOUCHERIE", MOVE_NODE_ONLY);

4.7.10 Delete a broader term relation of a concept
Operation : int DeleteBroaderTermLink(int TMSsessionID, char *FromTerm,

char *ToTerm)

Input : TMSsessionID, FromTerm, ToTerm

This operation deletes the broader term relation coming from the input concept
(FromTerm) and pointing to ToTerm. The operation fails in the following cases:

• There is no broader term relation coming from the input concept
(FromTerm) and pointing to ToTerm.

• The broader term relation to be deleted is the last.
• FromTerm or ToTerm is not the name of any existing descriptor of

currently used thesaurus.

Example:
DeleteBroaderTermLink(tms_session,"TermeFr`BOUCHERIE","TermeFr`MARCHE
");

April 2002/v1.1 -31- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.7.11 Delete a source
Operation : int DeleteSource(int TMSsessionID, char * sourceName)

Input : TMSsessionID, sourceName

This operation deletes a source. The operation fails in the following case:
• sourceName is not the name of any existing source of currently used

thesaurus.

Example:
DeleteSource(tms_session, "Literature`mySource");

4.7.12 Delete an editor
Operation : int DeleteEditor(int TMSsessionID, char * editorName)

Input : TMSsessionID, editorName

This operation deletes an editor. The operation fails in the following case:
• editorName is not the name of any existing editor of currently used

thesaurus.

Example:
DeleteEditor(tms_session, "Person`myEditor");

4.8 Comments Handling Operations

4.8.1 Get a descriptor’s comment size
Operation : int GetDescriptorCommentSize(int TMSsessionID, char

*descriptorName, int *comment_size, char *fromCommentCategory,
char *commentCategory)

Input : TMSsessionID, descriptorName, comment_size,
fromCommentCategory, commentCategory

This operation gets the comment size of the given descriptor. The kind of the returned
comment size is defined by the given comment category (fromCommentCategory,
commentCategory). The comment size is returned in integer pointer comment_size.
The operation fails in the following cases:

• descriptorName is not the name of any existing descriptor of currently used
thesaurus.

• given comment category (fromCommentCategory, commentCategory) is
not one of the available by the currently used thesaurus and the current
TMS model. (for example: MERIMEEThesaurusConcept-
>merimee_scope_note for thesaurus MERIMEE).

• descriptorName has not any comment value of the specified kind.

Example:
int comment_size;
GetDescriptorCommentSize(tms_session, "TermeFr`MOTTE",
&comment_size, "MERIMEEThesaurusConcept", "merimee_scope_note");

April 2002/v1.1 -32- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.8.2 Get a descriptor’s comment
Operation : int GetDescriptorComment(int TMSsessionID, char *descriptorName,

char *comment, char *fromCommentCategory, char
*commentCategory)

Input : TMSsessionID, descriptorName, comment, fromCommentCategory,
commentCategory

This operation gets the comment of the given descriptor. The kind of the returned
comment is defined by the given comment category (fromCommentCategory,
commentCategory). The comment is returned in string comment which must be
initially allocated. The operation fails in the following cases:

• descriptorName is not the name of any existing descriptor of currently used
thesaurus.

• given comment category (fromCommentCategory, commentCategory) is
not one of the available by the currently used thesaurus and the current
TMS model. (for example: MERIMEEThesaurusConcept-
>merimee_scope_note for thesaurus MERIMEE).

• descriptorName has not any comment value of the specified kind.

Example:
char *stored_comment
GetDescriptorComment(tms_session, "TermeFr`MOTTE", stored_comment,
"MERIMEEThesaurusConcept", "merimee_scope_note");

=(char*)malloc(comment_size*sizeof(char));

4.8.3 Set a descriptor’s comment
Operation : int SetDescriptorComment(int TMSsessionID, char

*descriptorName, char *comment, char *fromCommentCategory, char
*commentCategory)

Input : TMSsessionID, descriptorName, comment, fromCommentCategory,
commentCategory

This operation sets the comment for the given descriptor. The kind of the new
comment is defined by the given comment category (fromCommentCategory,
commentCategory). The new comment is given in string comment. The operation fails
in the following cases:

• descriptorName is not the name of any existing descriptor of currently used
thesaurus.

• given comment category (fromCommentCategory, commentCategory) is
not one of the available by the currently used thesaurus and the current
TMS model. (for example: MERIMEEThesaurusConcept-
>merimee_scope_note for thesaurus MERIMEE).

• given new comment string comment is NULL or empty.

Example:
char comment[100];
strcpy(comment, "this is a test comment");
SetDescriptorComment(tms_session, "TermeFr`MOTTE", comment,
"MERIMEEThesaurusConcept", "merimee_scope_note");

April 2002/v1.1 -33- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

4.8.4 Delete a descriptor’s comment
Operation : int DeleteDescriptorComment(int TMSsessionID, char

*descriptorName, char *fromCommentCategory, char
*commentCategory)

Input : TMSsessionID, descriptorName, fromCommentCategory,
commentCategory

This operation deletes the comment of the given descriptor. The kind of the comment
to be deleted is defined by the given comment category (fromCommentCategory,
commentCategory). The operation fails in the following cases:

• descriptorName is not the name of any existing descriptor of currently used
thesaurus.

• given comment category (fromCommentCategory, commentCategory) is
not one of the available by the currently used thesaurus and the current
TMS model. (for example: MERIMEEThesaurusConcept-
>merimee_scope_note for thesaurus MERIMEE).

• descriptorName has not any comment value of the specified kind.

Example:
DeleteDescriptorComment(tms_session, "TermeFr`MOTTE",
"MERIMEEThesaurusConcept", "merimee_scope_note");

April 2002/v1.1 -34- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Appendix A – An example
In the following we present an example of the usage of the SIS-TMS C application
programmatic interface functions. In the example we create on a thesaurus
(“ENGLISH”) a new facet (“cpp_test_facet”, a new hierarchy (“cpp_test_hierarchy”)
under this facet and a new descriptor (“cpp_test_descriptor”) under the new
hierarchy.
/**
 *
 * Semantic Index System
 *
 * COPYRIGHT (c) 1992 by Institute of Computer Science,
 * Foundation of Research and Technology - Hellas
 * POBox 1385, Heraklio Crete, GR-711 10 GREECE
 *
 *
 * ALL RIGHTS RESERVED
 *
 * This software is furnished under license and may be used only in
 * accordance with the terms of that license and with the inclusion
 * of the above copright notice. This software may not be provided
 * or otherwise made available to, or used by, any other person. No
 * title to or ownership of the software is hereby transferred.
 *
 *
 * Module : main.cpp
 * Version : 203.4
 *
 * Purpose :
 *
 * Author : Karamaoynas Polykarpos
 * Creation Date : 1/10/1998 Date of last update : 2/11/99
 *
 * Remarks :
 *
 *
 ***/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#ifdef SIS_WIN32
 #include "conio.h"
#endif

#include "sis_kernel/time.h"
#include "cpp_api/cs_defs.h"
#include "cpp_api/identifier.h"
#include "cpp_api/sis_classes.h"

#include "cpp_api/c_session_wrapper.h"
#include "tms_api/tms_api_defs.h"
#include "tms_api/c_tmsapi_wrapper.h"
#include "messages/translate.h"

void c_tms_api_test(int TmsApiSessionId, int SisApiSessionId);
/*---
 main()
---*/
int main(int argc,char **argv)
{
 int SisApiSessionId;
 int TmsApiSessionId;
 int ret;

 // check the arguments
 if (argc != 2) {
 fprintf(stderr, "The syntax is : %s <server name> <server port>\n",
 argv[0]);
 getch();
 exit(1);
 }

 create_SIS_CS_Session(&SisApiSessionId, argv[1], atoi(argv[2]), "", "");

April 2002/v1.1 -35- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

 if (open_connection(SisApiSessionId) < 0) {
 fprintf(stderr, "No server running at machine: %s and port : %d\n"),
 argv[1], atoi(argv[2]);
 getch();
 exit(1);
 }

 // initialize tms_api
 create_TMS_API_Session(&TmsApiSessionId, SisApiSessionId);
 ret = SetThesaurusName(TmsApiSessionId, "ENGLISH");
 if (ret == TMS_APIFail) {
 printf(GetTMS_APIErrorMessage(TmsApiSessionId));
 getch();
 exit(1);
 }

 // test_function
 c_tms_api_test(TmsApiSessionId, SisApiSessionId);

 // close tms_api
 release_TMS_API_Session(TmsApiSessionId);

 // close the connection with the server
 close_connection(SisApiSessionId);
 // Close down the API
 release_SIS_Session(SisApiSessionId);

 return 0;
}

/*---
 c_tms_api_test()
---*/
void c_tms_api_test(int TmsApiSessionId, int SisApiSessionId)
{
 int ret = TMS_APISucc;

 printf("---\n");
 printf("----------- C TMS API TESTING PROGRAM -----------\n");
 printf("---\n");

 // begin of transaction
 begin_transaction(SisApiSessionId);

 // CreateFacet()
 ret = CreateFacet(TmsApiSessionId, "ENGLISHClass`c_test_facet");
 if (ret == TMS_APISucc) printf("Succeded to CreateFacet()\n");
 else goto test_exit_point;

 // CreateHierarchy()
 ret = CreateHierarchy(TmsApiSessionId, "ENGLISHClass`c_test_hierarchy",
"ENGLISHClass`c_test_facet");
 if (ret == TMS_APISucc)
 printf("Succeded to CreateHierarchy()\n");
 else
 goto test_exit_point;

 // CreateDescriptor()
 ret = CreateDescriptor(TmsApiSessionId, "EnTerm`c_test_descriptor",
"EnTerm`c_test_hierarchy");
 if (ret == TMS_APISucc)
 printf("Succeded to CreateDescriptor()\n");
 else
 goto test_exit_point;

 // end of transaction
 end_transaction(SisApiSessionId);

// exit point
test_exit_point:
 if (ret == TMS_APIFail) {
 printf(GetTMS_APIErrorMessage(TmsApiSessionId));
 abort_transaction(SisApiSessionId);
 }

 printf("end\n");
 getch();
}

April 2002/v1.1 -36- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

On WIN32 systems the include files that should be used to compile this code are:
sis_kernel/time.h,
cpp_api/cs_defs.h,
cpp_api/identifier.h,
cpp_api/sis_classes.h,
cpp_api/c_session_wrapper.h,
tms_api/tms_api_defs.h,
tms_api/c_tmsapi_wrapper.h.

On WIN32 systems the libraries (Borland 5.01 libraries) that should be used to link
this code are:

Client – Server:
• lib_c_tmsapi_cs_2b.lib (The C interface SIS-TMS)
• lib_cpp_tmsapi_cs_2b.lib (The C++ interface SIS-TMS)
• lib_c_api_session_cs_2b.lib (The C interface SIS API)
• cpp_api_cs_2b.lib (The C++ interface SIS API)
• lib_sis_kernel_2b.lib (The SIS Kernel)
• lib_time_2b.lib (Time functions library)
• ccomms_2b.lib (Client Communications)
• connection_2b.lib (Used to open a connection to the server)
• libl.lib

Direct Access:
No direct access interface (using sessions) is provided for SIS-TMS API.

C API on DLL:
• tmsapi_dll.dll (The C interface SIS-TMS API)

Note: this dll library contains the SIS-TMS API functions as described in
section 4 and all the SIS-API functions as described in the “SIS - Application
Programmatic Interface Reference Manual”.

April 2002/v1.1 -37- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Appendix B - Changes from previous versions
In the process of upgrading the functionality of the Thesaurus Management System
Application Programmatic Interface (SIS-TMS API) some functions were added,
other changed name, while other changed the number or the order of their arguments,
in order to be more readable or to be in accordance with the API function naming and
argument passing conventions.

Changes from version 1.0 to version 1.1

In order to provide real multi-threading to the clients that were using the SIS-TMS,
we introduced the notion of sessions for SIS-TMS and SIS C and Java programmatic
interface.

Creating multiple instances of TMSAPIClass and QClass (JAPI) was not enough to
provide multi-thead access to the SIS-Server, since the underlying libraries (dll's) did
not support it. Now these libraries support such mechanism via sessions. Thus now
creating multiple TMSAPIClass and QClass instances (JAPI) and creating separate
sessions for each instance enables the application developer to have real multi-thread
access to the SIS-Server.

All C-API functions have changed: they all take as first argument the TMSsessionID
(integer). A session is created by the functions create_TMS_API_Session(), which
creates a session and returns its ID. These functions have replaced the function
init_TMS_API(). A session that is no longer needed may be released by
release_TMS_API_Session(), which replaced the function close_TMS_API().

April 2002/v1.1 -38- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Appendix C - C++ Programmatic Interface
In the following we present the basic differences between the C application
programmatic interface (SIS-TMS C-API) and the C++ application programmatic
Interface (SIS-TMS C++ API).

The interface is built on tms_api class, which provides as public member functions
all the functions of described in this document.

Functions such as create_TMS_API_Session(), release_TMS_API_Session()
have no meaning since multi-threading can be achieved by multiple instances of
classes tms_api. Thus the first argument of the functions of this SIS-TMS API
(TMSsessionID) is omitted.

Applications build with C++API need different include files and libraries to be
compiled. Below we present an example, which is the C++ implementation of the
example presented in “Appendix A – An example”

/**
 *
 * Semantic Index System
 *
 * COPYRIGHT (c) 1992 by Institute of Computer Science,
 * Foundation of Research and Technology - Hellas
 * POBox 1385, Heraklio Crete, GR-711 10 GREECE
 *
 *
 * ALL RIGHTS RESERVED
 *
 * This software is furnished under license and may be used only in
 * accordance with the terms of that license and with the inclusion
 * of the above copright notice. This software may not be provided
 * or otherwise made available to, or used by, any other person. No
 * title to or ownership of the software is hereby transferred.
 *
 *
 * Module : main.cpp
 * Version : 203.4
 *
 * Purpose :
 *
 * Author : Karamaoynas Polykarpos
 * Creation Date : 1/10/1998 Date of last update : 2/11/99
 *
 * Remarks :
 *
 *
 ***/

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#ifdef SIS_WIN32
 #include "conio.h"
#endif

#include "sis_kernel/time.h"
#include "cpp_api/cs_defs.h"
#include "cpp_api/identifier.h"
#include "cpp_api/sis_classes.h"
#include "sis_kernel/telos_ro.h"
#include "sis_kernel/obj_check.h"
#include "sis_kernel/initial.h"
#include "cpp_api/cs_defs.h"
#ifdef CLIENT_SERVER
 #include "cpp_api/cs_comms.h"
#endif
#include "cpp_api/query_func.h"
#include "cpp_api/set_tuple.h"
#include "cpp_api/q_tmpsets.h"

April 2002/v1.1 -39- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

#include "cpp_api/q_expstack.h"
#include "cpp_api/cs_errcodes.h"
#include "cpp_api/q_ccache.h"
#include "cpp_api/q_class_header.h"
#include "cpp_api/connection.h"

#include "tms_api/tms_api.h"

sis_api *QC = NULL;
SIS_Connection *CC = NULL;
tms_api *tmsAPI; // global

void test();

/*---
 main()
---*/
int main(int argc,char **argv)
{
 int ret;

 // check the arguments
 if (argc != 2) {
 fprintf(stderr, "The syntax is : %s <server name> <server port>\n",
 argv[0]);
 getch();
 exit(1);
 }

 // create_SIS_CS_Session()
 SOCKET S = 0;
 QC = new sis_api(S);
 if(QC == NULL) return -1;
 CC = new SIS_Connection(QC, argv[1], atoi(argv[2]), "", "", "");
 if(CC == NULL) return -1;

 // open_connection()
 CC->open_connection();
 S = CC->GetSocket();
 QC->SetSocket(S);

 // create tms_api object
 tmsAPI = new tms_api(QC, CC);

 ret = tmsAPI->SetThesaurusName("ENGLISH");
 if (ret == TMS_APIFail) {
 printf("%s\n", tmsAPI->GetTMS_APIErrorMessage());
 getch();
 exit(1);
 }

 // test_function
 test();

 // deallocate tms_api object
 delete tmsAPI;

 // close the connection with the server
 CC->close_connection();

 // Close down the API
 if(QC != NULL) delete QC;
 if(CC != NULL) delete CC;

 return 0;
}

/*---
 test()
---*/
void test()
{
 int ret = TMS_APISucc;

 printf("---\n");
 printf("---------- C++ TMS API TESTING PROGRAM ----------\n");
 printf("---\n");

 // begin of transaction
 CC->begin_transaction();

April 2002/v1.1 -40- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

 // CreateFacet()
 ret = tmsAPI->CreateFacet("ENGLISHClass`cpp_test_facet");
 if (ret == TMS_APISucc) printf("Succeded to CreateFacet()\n");
 else goto test_exit_point;

 // CreateHierarchy()
 ret = tmsAPI->CreateHierarchy("ENGLISHClass`cpp_test_hierarchy",
"ENGLISHClass`cpp_test_facet");
 if (ret == TMS_APISucc) printf("Succeded to CreateHierarchy()\n");
 else goto test_exit_point;

 // CreateDescriptor()
 ret = tmsAPI->CreateDescriptor("EnTerm`cpp_test_descriptor",
"EnTerm`cpp_test_hierarchy");
 if (ret == TMS_APISucc) printf("Succeded to CreateDescriptor()\n");
 else goto test_exit_point;

 // end of transaction
 CC->end_transaction();

 // exit point
test_exit_point:
 if (ret == TMS_APIFail) {
 printf("%s\n", tmsAPI->GetTMS_APIErrorMessage());
 CC->abort_transaction();
 }

 printf("end\n");
 getch();
}

On WIN32 systems the include files that should be used to compile this code are:
sis_kernel/time.h,
cpp_api/cs_defs.h,
cpp_api/identifier.h,
cpp_api/sis_classes.h,
sis_kernel/telos_ro.h,
sis_kernel/obj_check.h,
sis_kernel/initial.h,
cpp_api/cs_defs.h,
cpp_api/cs_comms.h,
cpp_api/query_func.h,
cpp_api/set_tuple.h,
cpp_api/q_tmpsets.h,
cpp_api/q_expstack.h,
cpp_api/cs_errcodes.h,
cpp_api/q_ccache.h,
cpp_api/q_class_header.h (contains the definition of sis_api),
cpp_api/connection.h (contains the definition of SIS_Connection),
tms_api/tms_api.h (contains the definition of tms_api).

On WIN32 systems the libraries (Borland 5.01 libraries) that should be used to link
this code are:

Client – Server:
• lib_cpp_tmsapi_cs_2b.lib (The C++ interface SIS-TMS API)
• cpp_api_cs_2b.lib (The C++ interface SIS API)
• lib_sis_kernel_2b.lib (The SIS Kernel)
• lib_time_2b.lib (Time functions library)
• ccomms_2b.lib (Client Communications)
• connection_2b.lib (Used to open a connection to the server)
• libl.lib

April 2002/v1.1 -41- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Direct Access:
No direct access interface (using sessions) is provided for SIS-TMS API.

C API on DLL:
There is no C++ interface on provided on dll.

April 2002/v1.1 -42- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

Appendix D – Java Programmatic Interface
In the following we present the basic differences between the C application
programmatic interface (SIS-TMS C-API) and Java application programmatic
interface (SIS-TMS JAPI).

The interface is built on class TMSAPIClass, which provides as public member
functions all the functions of described in this document.

The structures defined for argument passing, such as RenameNamesCouple,
IntegerObject, etc. are implemented as separate classes and all the classes and dll’s
are provided in a jar file (called “japi13.jar” for version 1.3 of the Java-API, which is
the version presented here). We use these structures as arguments to the functions
described in this document. The Java classes that replace them are:

• IntegerObject replaces int* (an integer argument, whenever is used ‘pass-
by-reference’)

• StringObject replaces char* (a string argument, whenever is used ‘pass-by-
reference’)

• CMValue replaces cm_value
• CategorySet replaces category_set
• Identifier replaces IDENTIFIER
• Time replaces TIME
• RenameNamesCouple replaces RenameNamesCouple

Below we present an example which is the Java implementation of the example
presented in “Appendix A – An example”.

import java.io.*;

class tms_test {
 static QClass Q;
 static TMSAPIClass TA;
 static IntegerObject sis_session;
 static IntegerObject tms_session;
 static int transaction_ok = 0;

public tms_test() {
 Q = new QClass();
 TA = new TMSAPIClass();
 sis_session = new IntegerObject();
 tms_session = new IntegerObject();
 int ret;

 Q.create_SIS_CS_Session(sis_session, "agnes",1245, "", "");
 Q.open_connection(sis_session.getValue());

 TA.create_TMS_API_Session(tms_session, sis_session.getValue());

 // begin of transaction

 Q.begin_transaction(sis_session.getValue());

 // CreateFacet()
 descr.setValue("MERIMEEClass`c_test_facet");
 ret = TA.CreateFacet(tms_session.getValue(),descr);
 if (ret == TA.TMS_APISucc)
 System.out.println("Succeded to CreateFacet()");
 check_success(ret);

 // CreateHierarchy()

April 2002/v1.1 -43- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

 descr1.setValue("MERIMEEClass`c_test_hierarchy");
 descr.setValue("MERIMEEClass`c_test_facet");
 ret = TA.CreateHierarchy(tms_session.getValue(),descr1, descr);
 if (ret == TA.TMS_APISucc)
 System.out.println("Succeded to CreateHierarchy()");
 check_success(ret);

 // CreateDescriptor()
 descr1.setValue("TermeFr`c_test_descriptor");
 descr.setValue("TermeFr`c_test_hierarchy");
 ret = TA.CreateDescriptor(tms_session.getValue(),descr1, descr);
 if (ret == TA.TMS_APISucc)
 System.out.println("Succeded to CreateDescriptor()");
 check_success(ret);

 // end of transaction
 if (transaction_ok == 1)
 Q.end_transaction(sis_session.getValue());

 TA.release_TMS_API_Session(tms_session.getValue());

 Q.close_connection(sis_session.getValue());
 Q.release_SIS_Session(sis_session.getValue());
}

static void check_success(int ret) {
 if (ret == TA.TMS_APIFail) {
 StringObject buf = new StringObject();
 TA.GetTMS_APIErrorMessage(tms_session.getValue(),buf);
 System.out.println("Failed: " + buf);
 Q.abort_transaction(sis_session.getValue());
 transaction_ok = 0;
 } else
 transaction_ok = 1;
}

 public static void main(String[] args) {
 new tms_test();
 System.out.println("press any key to exit....");
 try{
 System.in.read();

 }catch(IOException e){
 System.out.println("Cannot Read!!!");
 }
 }
}

April 2002/v1.1 -44- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

INDEX
AbandonDescriptor26, 27
AbandonFacet..26
AbandonHierarchy....................................26
abort_transaction13, 36, 41, 44
begin_query...6
begin_transaction6, 13, 36, 40, 43
ClassifyHierarchyInFacet.........................22
ClassifyNewDescriptor..............................21
ClassifySource......................................22, 23
close_connection6, 36, 40, 44
close_SIS_API ..38
close_TMS_API ..38
CONNECT_NODE_AND_SUBTREE.......31
create_SIS_CS_Session.........6, 35, 38, 40, 43
create_SIS_SA_Session38
create_TMS_API_Session6, 13, 14, 36, 38, 39,

43
CreateAlternativeTerm.............................19
CreateAmericanWord...............................20
CreateCatalanWord20
CreateDanishWord20
CreateDescriptor17, 36, 41, 44
CreateDescriptorAttribute18, 19
CreateEditor20, 21, 22, 23, 24
CreateEnglishWord...................................20
CreateFacet15, 36, 41, 43
CreateFacetAttribute15, 16
CreateFrenchWord20
CreateGermanWord20
CreateGreekWord...............................20, 21
CreateHierarchy16, 36, 41, 43, 44
CreateHierarchyAttribute16
CreateInterThesRelation19
CreateItalianWord20
CreateNewDescriptorAttribute..........17, 18
CreatePortugueseWord20
CreateSource..20
CreateSpanishWord20
CreateUsedForTerm20
DeClassifyHierarchyFromFacet22
DeClassifyNewDescriptor21, 22
DeClassifySource23
DeleteBroaderTermLink31
DeleteDescriptorAttribute30
DeleteDescriptorComment34

DeleteEditor... 32
DeleteFacet .. 28
DeleteFacetAttribute 28, 29
DeleteHierarchy .. 29
DeleteHierarchyAttribute 29
DeleteInterThesRelation 30
DeleteNewDescriptor 29
DeleteNewDescriptorAttribute 29, 30
DeleteSource .. 32
end_query ... 6, 13
end_transaction 6, 13, 36, 41, 44
GetDescriptorComment 32, 33
GetDescriptorCommentSize 32
GetThesaurusName 14
GetTMS_APIErrorMessage .. 15, 36, 40, 41,

44
init_SIS_API_CS.. 38
init_TMS_API .. 38
LOGINAM_SIZE 24
MOVE_NODE_AND_SUBTREE 31
MOVE_NODE_ONLY 31
MoveToHierarchy............................... 30, 31
open_connection 6, 35, 40, 43
release_SIS_Session 6, 36, 38, 44
release_TMS_API_Session .. 6, 14, 36, 38, 39,

44
RenameDescriptor 24
RenameEditor ... 25
RenameFacet 23, 24
RenameHierarchy 23, 24
RenameNamesCouple........................... 24, 43
RenameNamesCouples 24
RenameNewDescriptor............................. 24
RenameSource... 25
SetDescriptorComment 33
SetThesaurusName 6, 13, 14, 36, 40
sis_api ... 40, 41
SIS_Connection 40, 41
tms_api.......................... 35, 36, 37, 39, 40, 41
TMS_APIFail 13, 36, 40, 41, 44
TMS_APISucc.............. 13, 36, 40, 41, 43, 44
UndoAbandonDescriptor 28
UndoAbandonFacet 27
UndoAbandonHierarchy.................... 27, 28
UndoRenameDescriptor 25

April 2002/v1.1 -45- ICS-FORTH

SIS-TMS Application Programmatic Interface, Reference Manual

References
1. D. J. Foskett. Thesaurus. In Readings in Information Retrieval, eds. K. Sparck Jones and P. Willet, publisher

Morgan Kaufmann, 1997.
2. R. S. Michalski. Beyond Prototypes and Frames: The Two-Tiered Concept Representation. Categories and

Concepts, Theoretical Views and Inductive Data Analysis, eds. I. Mechelen, J. Hampton, R. Michalski, P.
Theuns, 1993.

3. M. Sintichakis and P. Constantopoulos, A Method for Monolingual Thesauri Merging, Proc. of the 20th
International Conference on Research and Development in Information Retrieval, ACM SIGIR, July
1997,Philadelphia, PA, USA.

4. M. Doerr and I. Fundulaki. A proposal on extended interthesaurus links semantics. Technical Report ICS-
FORTH/TR-215, March 1998.

5. Introduction to the Art & Architecture Thesaurus. Published on behalf of The Getty Art History Information
Program, Oxford University Press, New York, 1994.

6. D. Soergel. The Arts and Architecture Thesaurus (AAT)-A critical appraisal. Technical Report, College of
Library and Information Sciences, University of Meryland, 1995.

7. C. Roulin. Sub-Thesauri as part of a metathesaurus. In International Study Conference on Classification
Research, Classification Research for knowledge representation and organisation, pp. 329-336. Elsevier, 1992.

8. M. Doerr, "Reference Information Acquisition and Coordination", in: "ASIS'97 -Digital Collections:
Implications for Users, Funders, Developers and Maintainers", Proceedings of the 60th Annual Meeting of the
American Society for Information Sciences, " November 1-6 '97, Washington, Vol.34. Information Today Inc.:
Medford, New Jersey, 1997. ISBN 1-57387-048-X.

9. M. Doerr and I. Fundulaki, "SIS - TMS: A Thesaurus Management System for Distributed Digital Collections"
Proc. 2nd European Conference, ECDL'98, September 1998, Heraklion, Crete, Greece.

April 2002/v1.1 -46- ICS-FORTH

	Introduction
	SIS-TMS Technical Characteristics
	SIS-TMS Programmatic Interface Technical Characteristics
	SIS-TMS client-server model
	SIS sessions and TMS sessions

	The programmatic scenario
	Thesaurus Management Schema Considerations
	Thesaurus Structures
	Assumptions on Concepts
	Modelling Thesaurus Notions
	Intrathesaurus Relations
	Representing Multiple Interlinked Thesauri
	Interthesaurus Relations

	Version Control and Data Consistency

	The functionality of the Update Application Programmatic Interface functions
	General Description
	General Operations
	Create a session
	Release a session
	Get the sis-session associated with a tms-session
	Set a thesaurus name
	Get current thesaurus name
	Get TMS-API error message

	Addition Operations
	Create a new facet
	Create a facet attribute
	Create a new hierarchy
	Create a hierarchy attribute
	Create a new concept
	Associate a new concept with terms from same thesauri
	Associate a released concept with terms from same thesauri
	Associate a concept with terms from other thesauri
	Create a new alternative term
	Create a new used for term
	Create a new editor
	Create a new source
	Create a new word

	Classification Operations
	Classify a new descriptor
	Declassify a new descriptor
	Classify a hierarchy in a facet
	Declassify a hierarchy from a facet
	Classify a source
	Declassify a source

	Renaming Operations
	Rename a facet
	Rename a hierarchy
	Rename a new concept
	Rename a released concept
	Undo Rename a released concept
	Rename a source
	Rename an editor

	Abandoning Operations
	Abandon a released facet
	Abandon a released hierarchy
	Abandon a released concept
	Undo Abandon a released facet
	Undo Abandon a released hierarchy
	Undo Abandon a released concept

	Delete Operations
	Delete a new facet
	Delete a facet attribute
	Delete a new hierarchy
	Delete a hierarchy attribute
	Delete a new descriptor
	Delete a new descriptor’s attribute
	Delete a released descriptor’s attribute
	Disassociate a concept with terms from other thesauri
	Move a concept to another hierarchy
	Delete a broader term relation of a concept
	Delete a source
	Delete an editor

	Comments Handling Operations
	Get a descriptor’s comment size
	Get a descriptor’s comment
	Set a descriptor’s comment
	Delete a descriptor’s comment

	Appendix A – An example
	Appendix B - Changes from previous versions
	Appendix C - C++ Programmatic Interface
	Appendix D – Java Programmatic Interface
	References

