

SIS – Data Entry Language
User’s Manual

Version 2.2

Institute of Computer Science

Foundation for Research and Technology - Hellas

SIS-Data Entry Language, User’s Manual

 TABLE OF CONTENTS

TABLE OF CONTENTS 3

1. OVERVIEW OF THE SIS DATA ENTRY LANGUAGE (TELOS) 4

1.1 General information 4

1.2 Changed features from the original Telos design 4

1.3 General Concepts of the Datamodel 5

2. THE TELL STATEMENT 10

2.1 Names of attributes 10

2.2 Examples 11

2.3 SIS EXAMPLES 18

2.4 A grammar for the TELL statement 21

3. THE RETELL STATEMENT 22

3.1 The RETELL grammar 22

3.2 How RETELL works 23

3.3 How we define an object 24

3.4 How we define an operation on a particular object 26

3.5 Examples 27

4. APPENDIX A - RESERVED KEYWORDS 31

5. APPENDIX B - CHANGES FROM PREVIOUS VERSIONS 33

5.1 Changes fron version 1.3 to 1.3.1 33

5.2 Changes from version 1.3.1 to version 2.0 33

5.3 Changes from version 2.0 to version 2.1 33

6. REFERENCES 34

INDEX 35

 October 1998/v2.2 -3- ICS-FORTH

SIS-Data Entry Language, User’s Manual

1. Overview of the SIS data entry language
(Telos)

1.1 General information
The data entry language of the SIS is derived from the Telos knowledge
representation language. The detailed design of the original Telos language is in [1].
For the SIS only the data model was kept and all AI features removed. Extensions
were made mainly to handle efficiently automatic generation of update statements.
The purpose of this section is to give an overview of the features of the Telos
knowledge representation language as implemented in the SIS, the syntax of the
system and details on how to run it. The implementation is done completely in C++.
The description of the current implementation is in [4].
The Telos language representational framework is object-oriented. Telos objects are
grouped into individuals (entities, concepts, nodes) and attributes (relationships,
attribute links). It provides three structuring principles, namely the classification
(inverse instantiation,) specialization (inverse generalization) and the aggregation
(inverse decomposition). It does not distinguish between schema and data. Schema
changes may be done without loss of data at any time by simple data entry statements.

1.2 Changed features from the original Telos design
Dropped features

1. Assertional language.

2. Inference mechanism.

The inference mechanism of the query language and the assertion language have been
dropped due to their inefficiency.

Additional features

1. Update mechanism (RETELL statements). The update mechanism allows
changing any part of the stored description of an object without affecting other
parts, as long as no inconsistency with other descriptions is caused.

2. Enhanced name scope mechanism. This name scope mechanism allows to enter
entities of software descriptions e.g. with exactly the symbols appearing in the
source code without causing name conflicts. (not yet implemented in this version)

3. Procedure triggers mechanism. These triggers are host language (C++)
invocations attached to individual or attribute classes. The insertion or deletion of
objects from the class triggers them. These will replace the integrity constrains of
the old system. (not yet implemented in this version)

4. Context mechanism. A context is a part of the knowledge base, which can be
queried and updated separately from other contexts. Different contexts may have
overlapping objects. Each context has its own local name space (symbol table) so
one can provide new names for objects existing in other contexts. (not yet
implemented in this version)

October 1998/v2.2 -4- ICS-FORTH

SIS-Data Entry Language, User’s Manual

1.3 General Concepts of the Datamodel
The built-in Classes

The SIS base contains some built-in classes, which cannot be changed by the user.
They constitute the initial population, and any data entered by the user must directly
or indirectly be related to these. Built-in classes are given in this chapter by italics.

All data a user can enter are grouped into objects. These are all instances of Object.
Each object has a logical name as identifier. Logical names are ASCII strings,
currently limited to 95 characters. Internally the names are mapped to system
identifiers (SYSID) for efficiency, which are hidden to the user. Objects in the SIS
base are partial descriptions of corresponding entities, concepts, relations or notions
in the real world. The logical names are thought to be as close as possible to the
natural language expression by which we could characterize the corresponding thing
in real world. They must be unique however within their scope.

Among the objects, we distinguish individuals and attributes. Individuals correspond
to real things or sets or sets of sets etc. of these. Attributes correspond to the relations
among objects (and not the object they relate to) or sets or sets of sets etc. of relations.
Individuals are instances of Individual. They have no internal structure. Attributes are
instances of Attribute. They are objects in their own right. Any object must be an
individual or an attribute. Hence

Individual isA Telos_Object

Attribute isA Telos_Object

One individual together with a set of attributes and the objects they relate to constitute
a structured object in the common sense (e.g. as a C++ class instance or a C++ class).
There exist no cardinality constraints on the set of attributes at the moment. Such
constraints (as e.g. hold for a C++ class instance) are of minor importance for
descriptive purposes.

Classes are understood as a set of "instances" which have a logical name as identifier.
These instances may be classes again. Instances of a class must be declared explicitly.
There is no automatic classification. Classes may have no instances. Classes a user
can define are instances of Class. It is not allowed to define classes, which mix
individuals and attributes. Hence, Class is partitioned into IndividualClass and
AttributeClass and :

Telos_Class isA Telos_Object

IndividualClass isA Telos_Class

IndividualClass isA Individual

AttributeClass isA Telos_Class

AttributeClass isA Attribute

The hereto-defined built-in classes cannot be directly instantiated by the user. They
can only be related by user defined attributes. Classes users can directly instantiate
follow now.

 October 1998/v2.2 -5- ICS-FORTH

SIS-Data Entry Language, User’s Manual

Simple individuals or attributes, i.e. which are not classes, are tokens. Tokens are
instances of Token. They are said to have the "token instantiation level". Classes,
which have exclusively tokens as instances are simple classes. They are instances of
S_Class and said to have "simple class instantiation level". Classes, which have
exclusively simple classes as instances are metaclasses. They are instances of
M1_Class and said to have "metaclass instantiation level". We continue this scheme
deliberately and thus form the Instantiation Hierarchy of Telos (see Figure 1).
Currently these are supported until M4_Class, but in practice it is hard to find
something above meta_meta_meta level which makes sense. These "level classes"
constitute a partitioning of the objects orthogonal to the individual-attribute
partitioning. A user can directly instantiate the intersections of one level class with

either Individual or Attribute, together with some user defined classes or not, and
nothing else.

Individual_M1_Class Attribute_M1_Class

Individual_S_Class

Individual_Token

Attribute_S_Class

Attribute_Token

Token

S_Class

M1_Class

Individual Attribute

Telos_Class

Telos_Object

Figure 1 Instantiation Hierarchy of Telos

Hence any data entry statement must refer two built-in classes, e.g.

TELL Individual Person in S_Class end Person
These intersections are also built-in classes. Only for sake of readability their names
are not used in the data entry statement. Hence, in the above example we refer to the
class Individual_S_Class which is the intersection of Individual and S_Class:

Person instance of Individual_S_Class

and

Individual_S_Class isA Individual

October 1998/v2.2 -6- ICS-FORTH

SIS-Data Entry Language, User’s Manual

Individual_S_Class isA S_Class

Individual_S_Class isA IndividualClass

S_Class isA Telos_Class

All other intersections are named in the same way as Individual_S_Class with an
underscore between the two names. There are four built-in individual simple classes
for primitive values:

Telos_Integer Telos_Real Telos_String Telos_Time

Primitive values cannot be created or deleted. They can only be referenced. Remind
that an attribute is understood as a relation to an object, a primitive value for instance,
and not as the value itself. The identity of a primitive value is its value. The instance
relationship to the corresponding class is detected automatically. All built-in classes
can be related by user defined attributes.

Internal representation of SIS base objects

Every individual in the SIS base, except primitive values, consists of the following
single and necessary values

• SYSID - Internal identifier

• Sys_name - logical name

• Sys_class - built-in class it is instance of

and two sets

• IN_set - user defined classes it is an instance of

• ISA_set - user defined superclasses

Every attribute in the SIS base consists of the following single and necessary values

• SYSID - Internal identifier

• Sys_name - logical name

• Sys_class - built-in class it is instance of

• Sys_from - the relating object

• Sys_to - the related object

and two sets, which both may be empty

• IN_set - user defined classes it is an instance of

• ISA_set - user defined superclasses

All fields above, except Sys_class, are implemented by direct bidirectional linkage. In
a semantic network, there is no preference of query direction. There is no need for
building user defined secondary indexes. The direction (Sys_from -> Sys_to) of an
attribute is purely linguistic. It should correspond to the name of the attribute. An
attribute "father_of" may be defined inversely as "son_of" for instance.

 October 1998/v2.2 -7- ICS-FORTH

SIS-Data Entry Language, User’s Manual

The IN_set and ISA_set implement multiple instantiation and multiple inheritance.
Multiple instantiation is useful for classification purposes. A software object with the
name "MyFifo" may be instance of "C++Class" and "FIFO_Implementation" for
instance. Both sets may be empty. Isa relations are not supported at token level.

Structuring with Attributes

The logical name (Sys_name) of an attribute is called also "label" in the following.
The classes, an attribute is instance of, are called also the "categories" of the
attribute. An attribute with empty IN_set expresses a non-classified relation. The
label expresses its semantics only. In an implicit declaration (see below), it is
declared under the category - keyword "attribute".

An attribute class relates two classes, Sys_from and Sys_to. Besides setmembership,
as mentioned above, all instances of an attribute class must relate objects, which are
instances of the class Sys_from, to objects, which are instances of the class Sys_to
(Figure 2). The object p is an instance of the object P. The attribute x of object p is
instance of the attribute X of the object P, the attribute X is an attribute category for
attribute x. The object q is an instance of the object Q. All three instance relations
may also be inherited ones (see below).

P

p

in in

x

X
Q

q
in

isA

Q’

This rule expresses the common str
datamodels. An equivalent C++ exa

 class P {
 class Q *X;

 } p;
 class Q q;

p.X = &q;

In Telos, p.X may be a set. The set
level, the label may be omitted (see
x may also be instance of more
explanatory role, not a formatting
different level (compare C++ stati
must be equal (default) or less to
Sys_to object.

October 1998/v2.2
Figure 2
ucturing mechanism of object-oriented
mple would be:

 element, which relates p to q, has label x. At token
 below). In Telos, p.X may be empty. An attribute
than one category. Categories in Telos play an

role. The objects related by an attribute may be of
c class member). The level of the attribute itself
 the minimum of the levels of the Sys_from and

-8- ICS-FORTH

SIS-Data Entry Language, User’s Manual

General rules related to Specialization:

Isa relations (specialization) must be declared explicitly by the user. They assume a
subset relationship between the corresponding classes, even if these have no
instances. IsA relations must be non-cyclic. They are transitive. Any two classes
related by an isA relation must belong to the same instantiation level. If a class P is a
specialization of a class Q and Q is a specialization of a class R then P is regarded as
a specialization of R (inherited isA relation, Figure 3).

P

Q

R
isA

isAisA

If a class P is a specialization of a c
as an instance of Q as well (inherited

P

in

p

If an attribute class L1 is a speciali
L1 must be a specialization of S
specialization of Sys_to of L2. In th
of L1's Sys_from. This means, no i
which is explicit (non-inherited) in
class Q and they have both an attrib
attribute values (To_object), lets s
classes L become isA related, and th
three isA relations may also be inher

 October 1998/v2.2
Figure 3
lass Q and p is an instance of P then p is regarded
 instance relation, Figure 4).

Q

isA

in

Figure 4
zation of an attribute class L2, both Sys_from of
ys_from of L2, and Sys_to of L1 must be a
is case L1 "overwrites" L2 for all specializations
nstance of L1's Sys_from may have an attribute,
stance of L2. If a class P is a specialization of
ute class with the same Sys_name L, but different
ay V1 and V2 respectively, then both attribute
e class V1 must be isA to class V2 (Figure 5). All
ited ones (see above).

-9- ICS-FORTH

SIS-Data Entry Language, User’s Manual

 The datamodel supports strict multiple inheritance along the edges of the graph
determined by the relevant isA relations.

Q

p

isA isA

l

L
V2

V1

isA

isA

V2’

5

2. The TELL statemen
The TELL statement of the Telos l
classes of objects, attributes and class
to define hierarchy relations (ISA, IN
attributes and classes of attributes. Te
objects with attributes:

1. explicit definition using the Attrib

2. implicit definition within the Indiv

Explicit definition allows defining a
Implicit definition assigns the indiv
implicitly defined attributes. IsA re
declared implicitly. The level of an
above).

2.1 Names of attributes
The only name scope mechanism imp
Labels must be unique among all attr
labels along an isA path of their Sy
corresponding attributes in the same
have no labels (nonnamed attributes).
of the names of their Sys_from, Sys_
to declare two nonnamed
Sometimes a simple name is not enou
inheritance or instantiation (figure 6).

October 1998/v2.2
Figure
t
anguage provides the ability to enter objects,
es of attributes in to the database (SIS) and also
STANCE) between objects, classes of objects,

los provides two alternative ways for associating

ute declaration,

idual declaration.

ll possible fields of an attribute (see above).
idual declared explicitly as Sys_from to all
lations and attributes of attributes cannot be
implicitly defined attribute is the default (see

lemented up to now, deals with attribute labels.
ibutes with the same Sys_from value. Identical
s_from values designate an isA relation of the
 order (see above). Token level attributes may
 Their identity is regarded to be the combination
to, and IN_set (categories) values. It is an error

attributes with the same identity.
gh to reference an attribute class due to multiple

-10- ICS-FORTH

SIS-Data Entry Language, User’s Manual

in

O

U P

inin in in in

V Q

qv

X X

z y

6

We have two attribute classes w
starting at Class P, and the attrib
this name conflict we extend t
Sys_name of the From_object. e.g

TELL Individual O in S_C
with X from P

 y :q
with X from U

end O

 z :v

In the absence of the "from" clau
report a proper error message abo

2.2 Examples
This list of examples demonst
subsystem. Every Tell session co
BEGINTRANSACTION and e
operations for each Telos objec
commutative. Comments in Telo
supported.

The following Tell transaction de

BEGINTRANSACTION

TELL Individual Persons

with attribute
familyRelatio

end Persons

TELL Individual Person

 October 1998/v2.2
Figure
ith Sys_name X. The attribute y is instance of X
ute z is instance of X starting at Class U. To solve
he Sys_name X with the keyword "from" by the

lass, P, U
 { here X starting at P is used }

 { here X starting at U is used }

ses, the system would abort the input transaction and
ut the cause of the detected ambiguity.

rates all the possible features of the Telos Tell
nsists of Transactions. Each transaction starts with
nds with ENDTRANSACTION and has Tell

t. Within one transactions, the Tell statements are
s code are included in {}. Nested comments are

monstrates how someone can define Telos objects.

 in M1_Class

n : Persons

in S_Class, Persons

-11- ICS-FORTH

SIS-Data Entry Language, User’s Manual

with familyRelation
fatherOf : Person;
motherOf : Person

end Person

TELL Individual LegalIdentity in S_Class
end LegalIdentity

TELL Individual ResIdentity in S_Class
end ResIdentity

TELL Individual Researcher in S_Class isA Person
with attribute

identity : ResIdentity
end Researcher

TELL Individual Citizen in S_Class isA Person
with attribute

identity : LegalIdentity
end Citizen

TELL Individual Status in S_Class
end Status

{ This defines an attribute class from class Person to
class Status with attribute label status }

TELL Attribute status

From : Person
To : Status

in S_Class
end status

TELL Individual studentStatus in Token, Status
end studentStatus

TELL Individual identity1 in Token, LegalIdentity
end identity1

{ george has the attribute category status which is
inherited from class Person. The attribute identity is
the one from Citizen, that is stated explicitly because
Researcher has the same attribute as well, this is a case
of multiple inheritance. }

TELL Individual george in Token , Researcher, Citizen

with fatherOf
myFather : mike

with status
: studentStatus;

secStatus : employeeStatus

October 1998/v2.2 -12- ICS-FORTH

SIS-Data Entry Language, User’s Manual

with identity from Citizen
 : identity1

end george

TELL Individual employeeStatus in Token, Status
end employeeStatus

{ Person can have its own instances in addition to the
ones of its subclasses }

TELL Individual mike in Token, Person

end mike

ENDTRANSACTION

The following example demonstrates the use of the TELOS primitive types (i.e.
Telos_Real, Telos_Integer, Telos_String, Telos_Time).

BEGINTRANSACTION

TELL Individual Researcher in S_Class

with attribute
name : Telos_String;
salary : Telos_Integer;
height : Telos_Real;
birth_date : Telos_Time

end Researcher

TELL Individual researcher1 in Token , Researcher
with salary

CSIsalary : 100000
with height

:1.85
with name

:"george"
with birth_date

:[1974 March 6]
end researcher1

ENDTRANSACTION

How to write a Telos_String : A Telos_String is a string of characters and is
declared between the symbols " and " (like: "george"). Inside the string special
characters can be written by using the symbol "\" (like: "\n" for newline, "\0", "\t",
"\r", "\b", "\f", all these special symbols have the same meaning as the relevant C or
C++ special characters) or the symbol "\" followed by the octal escape sequence of
the character. If the string is too long, using the symbol "\" the string can be continued
to the next line skipping the blank spaces which are at the beginning of the line.

How to write a Telos_Time : Telos adopts an interval-based time model. There is a
set of expressions that can be used in order to declare a Telos_Time. These
expressions follow the prototype of Art and Architecture Thesaurus. They are

 October 1998/v2.2 -13- ICS-FORTH

SIS-Data Entry Language, User’s Manual

declared between the symbols [and] (like: [1974 March 6]) and can be grouped as
follows:

Date expressions: These expressions have the format [Year Month Day]. One can
declare only the Year, the Year and the Month or the whole date. Months must be
designated verbaly rather than numericaly. If it is the case that the date is not fully
declared, (i.e. only the year is given) the interval representation of this declaration is
the minimum interval that can fully contain the given information. For example if the
declaration [1974] is used, its internal representation will be the interval with bounds
1974/1/1 and 1974/12/31 respectively. This interval is the minimum one that contains
every date within 1974. The following examples demonstrate the use of date
expressions:

[1974 March 6] (with interval representation (1974/3/6, 1974/3/6))
[1974 March] (with interval representation (1974/3/1, 1974/3/31))
[1974] (with interval representation (1974/1/1, 1974/12/31))

The abbreviated form of the era designation "Before Common Era", BCE, in full
capitals and with no periods, is used for all dates before the year 1 (i.e. [1453 BCE]).

Decade expressions: These expressions declare the desired decade either absolutely
(i.e. [decade of 1970]) or relatively (i.e. [first decade of 19th century]). The internal
representation of these expressions is again the minimum interval that contains the
declared decade. The following examples demonstrate the use of decade expressions:

Absolute declaration:

Declaration Interval Representation
[Decade of 1970] (1970/1/1, 1979/12/31)
[Decade of 1970 BCE] (1979/1/1, 1970/12/31)

Relative declaration:

Declaration Interval Representation
[First decade of 20th century] (1900/1/1, 1909/12/31)
[First decade of 20th century BCE] (1909/1/1, 1900/12/31)

For the relative declaration the keywords (first/second/third/ .../ninth/last) are used.

There is an exception in the correspondence between the decade expressions and
their interval representation. For the first decade first century CE (the first decade
first century BCE) the interval representation begins at the year 1 (ends at year 1).
For example the expression [First decade of 1st century] is represented as (1/1/1,
9/12/31). This is so, because we do not expect year zero as a legal year.

Century expressions: These expressions have the format [(Number) century] (i.e.
[19th century]). Here are some century expression examples:

Declaration Interval Representation
[1st century] (1/1/1, 999/12/31)
[2nd century BCE] (199/1/1, 100/12/31)
[16th Century] (1500/1/1, 1599/12/31)

October 1998/v2.2 -14- ICS-FORTH

SIS-Data Entry Language, User’s Manual

There is an exception in the correspondance between the century expressions and
their interval representation. For the first century CE (the first century BCE) the
interval representation begins at the year 1 (ends at year 1). For example the
expression [1st century BCE] is represented as (999/1/1, 1/12/31).

Period Expressions: These expressions declare a time period either absolutely or
relatively. The absolute period expressions declare the begining and the ending of the
time period explicitly. The begining and the ending expressions can be any of the
expressions mentioned above (date, decade e.t.c) and are separated with a dash. Their
interval representation has lower bound the lower bound of the begining expression
and upper bound the upper bound of the ending expression. The following examples
demonstrate the use of absolute period expressions:

Declaration Interval Representation
[16th century - decade of 1970] (1500/1/1, 1979/12/31)
[14th century BCE - 1300 August CE] (1399/1/1, 1300/8/31)
[second decade of 1400 - 3rd century BCE] (1419/1/1, 200/12/31)

The BCE designation should appear in the ending of the period expression if both the
beginning and the ending expressions are before the year 1. If only the beginning
expression is before the year 1, then the BCE designation is used for the first
expression while the CE (common era) expression is used for the last one (as can be
seen in the examples above).

A time period can be declared relatively as well. Relative period expressions have the
following formats.

• [Early/Mid/Late (number) century]. The interval representation for each of the
keywords early, mid and late is the interval (0/1/1, 40/12/31), (30/1/1, 70/12/31)
and (60/1/1, 99/12/31) respectively. This means that for the declaration [mid 16th
century] the interval that represents the given information is (1530/1/1,
1570/12/31).

• [1st/2nd half (number) century]. These expressions correspond to the intervals
(0/1/1, 60/12/31) and (40/1/1, 99/12/31) respectively (i.e. the declaration [1st half
16th century] corresponds to the interval (1500/1/1, 1560/12/31)). Note that the
duration of the period assigned to each interval is 60 years rather than 50, as
someone would expect. This is so, because these periods represent uncertainty
periods, thus their boundaries should overlap (one cannot determine exactly when
the first half ends and when the second begins).

• [1st/2nd/3rd/4th quarter (number) century]. For this expressions the intervals
(0/1/1, 27/12/31), (25/1/1, 52/12/31), (50/1/1, 77/12/31) and (75/1/1, 99/12/31) are
assigned respectively (i.e. the interval (1525/1/1, 1552/12/31) is assigned to the
declaration [2nd quarter 16th century]).

All the keywords can be written with whatever combination of upper and lower case
letters. So the declaration [Decade of 1970] can be written [decAde OF 1970] or
[DECADE of 1970].

The following example demonstrates the use of from-clauses. It causes an abort to
the transaction due to the fact that the token identity1 is not an instance of the class
LegalIdentity although it should because there exist a From clause in the declaration

 October 1998/v2.2 -15- ICS-FORTH

SIS-Data Entry Language, User’s Manual

of token george specifying that the entity associated with it via the identity attribute
must be an instance of this class.

BEGINTRANSACTION

TELL Individual Researcher in S_Class

with attribute
identity : ResIdentity

end Researcher

TELL Individual Citizen in S_Class
with attribute

identity : LegalIdentity
end Citizen

TELL Individual LegalIdentity in S_Class
end LegalIdentity

TELL Individual ResIdentity in S_Class

end ResIdentity

TELL Individual george in Token , Researcher, Citizen
with identity from Citizen

: identity1
end george

TELL Individual identity1 in Token, ResIdentity
end identity1

ENDTRANSACTION

The following example demonstrates the creation of Isa-relations between explicitly
declared attribute classes.

BEGINTRANSACTION

TELL Individual ResIdentity in S_Class

isA PersonIdentity
end ResIdentity

TELL Individual Person in S_Class
end Person

TELL Individual Authority in S_Class

end Authority

TELL Attribute identity

from: Person
to: PersonIdentity

in S_Class
with attribute

certifiedBy: Authority

October 1998/v2.2 -16- ICS-FORTH

SIS-Data Entry Language, User’s Manual

end identity

TELL Individual Researcher in S_Class isA Person
end Researcher

TELL Individual AcadAuthority in S_Class isA Authority
end AcadAuthority

TELL Attribute resIdentity

from: Researcher
to: ResIdentity

in S_Class isA identity from Person
with attribute

certifiedBy: AcadAuthority
end resIdentity

TELL Individual PersonIdentity in S_Class
end PersonIdentity

ENDTRANSACTION

The following example demonstrates the explicit declaration of token attributes.

BEGINTRANSACTION

TELL Individual Person in S_Class

end Person

TELL Individual Authority in S_Class

end Authority

TELL Attribute identity

from: Person
to: PersonIdentity

in S_Class
with attribute

certifiedBy: Authority
end identity

TELL Individual PersonIdentity in S_Class
end PersonIdentity

TELL Individual george in Token, Person

end george

TELL Individual identity1 in Token, PersonIdentity

end identity1

TELL Individual authority1 in Token, Authority

end authority1

TELL Attribute myIdentity

 October 1998/v2.2 -17- ICS-FORTH

SIS-Data Entry Language, User’s Manual

from: george
to: identity1

in Token, identity
with certifiedBy

:authority1
end myIdentity

ENDTRANSACTION

2.3 SIS EXAMPLES
In the following we give some examples from the SIS base [3] built in FORTH.
Objects at each level essentially model the objects in their lower level.

This allows us to include a meta-model in the SIS base for the several description
models that are used for requirements, design, implementation etc. This requires three
levels.

• At the intermediate level, the entities and relationships relevant to each model are
defined.

• At the top level, these are grouped into classes and given the appropriate
attributes. Thus, the meta-class is defined that will allow addition of new models
should this be deemed necessary.

• At the lowest level, we have actual descriptions as entities and relationships are
combined into constructs meaningful according to the model.

The above can be seen through the following telos definitions.

TELL Individual DescriptionModel in M1_Class
with attribute

entities : Entity;
connections : Connection;
constructs : Construct;

end DescriptionModel

TELL Individual Entity in M1_Class

end Entity

TELL Individual Connection in M1_Class

end Connection

TELL Individual Construct in M1_Class
end Construct

ORM is now defined as a model, ie. an instance of the meta-model

TELL Individual ORM in S_Class, DescriptionModel
with entities : ORMRole;

: ORMState
with connections

: RoleToRole;
: StateToState

October 1998/v2.2 -18- ICS-FORTH

SIS-Data Entry Language, User’s Manual

with constructs
: RoleTransitionRule;
: StateTransitionTule

end ORM

At this point we enumerate the entities for the model. Below is one of them

TELL Individual ORMRole in S_Class, Entity
with attribute

property : Property
end ORMRole

When we instantiate the description, we are able to declare particular roles

TELL Individual CarDriver in Token, ORMRole
.
.
.

end CarDriver

Let us suppose that we intend to represent a program in the UNIX environment,
which is implemented as a shell script. The program has three views.

1. As an entity in the file system. The attributes of this entity are related with the fact
that it is seen as a file.

2. As a functional entity, ie. a program. Functional characteristics are of interest
here.

3. As a UNIX script. The structure in terms of UNIX command invocations is the
principal information associated with a unix script.

The three views correspond to three telos classes.

TELL Individual File in S_Class
with attribute

fileSystem : FileSystem;
address : DiskAddress;

with necessary
filename : FileName

end File

TELL Individual Program in S_Class

with attribute
signature : Signature;
domain : Domain;
comments : Telos_String

with necessary
name : ProgramName;

end Program

In the following we allow for sequencing information in a script. Information is
supplied in pairs, but only one program is necessary in order to allow for a simple
script with only one program

 October 1998/v2.2 -19- ICS-FORTH

SIS-Data Entry Language, User’s Manual

TELL Individual CommandSequence in S_Class
with attribute

nextCommand : Program
with necessary

prevCommand : Program;
end CommandSequence

TELL Individual Script in S_Class
with attribute

signature : Signature
with necessary

commandSequence : CommandSequence
end Script

Assume that we want to print all the filenames under a directory in alphabetical order,
regardless of the subdirectory they are in. This needs a lower level script that visits a
subdirectory, lists all names and returns to the parent directory. This script, invoked
through a foreach i (*) command produces a flat listing of all file and directory
names, which can be subsequently piped to sort.

Let us call this program allFiles, store it in /usr/etc, and use the programs cd
and ls to implement it.

TELL Individual prog1 in Token, Program
with name

: cd
with signature

: '$i'
end prog1

TELL Individual prog2 in Token, Program
with name

: ls
end prog2

TELL Individual prog3 in Token, Program
with name

: cd
with signature

: '..'
end prog3

TELL Individual allFiles1 in Token, CommandSequence
with prevCommand

: prog1
with nextCommand

: prog2
end allFiles1

TELL Individual allFiles2 in Token, CommandSequence

with prevCommand
: prog2

October 1998/v2.2 -20- ICS-FORTH

SIS-Data Entry Language, User’s Manual

with nextCommand
: prog3

end allFiles2

TELL Individual allFiles in Token, File, Program, Script
with commandSequence

: allFiles1;
: allFiles2

with name
: 'allfiles'

with filename
: /usr/etc/allFiles

with domain
: Utilities

end allFiles

2.4 A grammar for the TELL statement
For the syntax description, we use the following conventions:

• [] denotes optional phrases,

• {} is written if the phrases enclosed in the brackets may be repeated arbitrarily
often,

• | denotes alternative phrases,

• terminal symbols are enclosed in quotes.

TELL_statement::= "TELL" Individual_or_Attribute_definition
in_clause [isA_clause] [with_clause]

"end" [identifier]

Individual_or_Attribute_definition::= "Individual" identifier
 | "Attribute" identifier
 Component_section

Component_section::= "from" ":" identifier
 "to" ":" identifier

in_clause::= "in" Built_in_class {"," identifier}

isA_clause::= "isA" identifier {"," identifier} /* Tokens can not have */

 /* Superclasses */

with_clause::= "with" attributes {attributes}

attributes::= categories attributes

categories::= identifier {"," identifier}

attributes::= attribute {";" attribute}

attribute::= identifier : identifier

| : identifier

 October 1998/v2.2 -21- ICS-FORTH

SIS-Data Entry Language, User’s Manual

Built_in_class::= "Token" /* At this statement we define the instance */
 | "S_Class" /* level of each object */
 | "M1_Class"
 | "M2_Class"
 | "M3_Class"
 | "M4_Class"

identifier::= {letter} ({letter} | {digit}| _ | ("`"{letter}) | ("`"{digit}))* |
 "(" any character except SPACE TAB PARENTHENSIS ")"

3. The RETELL statement
Up to now we have used the TELL statement to define objects their hierarchies and
their relations in SIS base. With the RETELL statement we will be able to make
updates in SIS base. The RETELL statement collects the following features.

• Syntax of RETELL is as close as possible to that of the TELL statement.

• You can redefine with the RETELL statement anything you can define with the
TELL statement, except the assignment to the built-in system class (Sys_class).
So when we use RETELL we can change the Sys_name, Sys_from and Sys_to
values. We cannot delete them, because they are necessary. The RETELL
statement understands such a request as deletion of the object itself. We can add
or delete elements of the IN_set and ISA_set sets.

• No redundant information is required. The RETELL statement needs only
information to identify the object or the set of objects to be changed, added,
deleted and the corresponding action to be taken. This feature helps the user to
avoid queries.

• Apply several changes to an object with in one RETELL. The consistency of the
resulting changes is controlled at the end of the RETELL statement. There is no
dependency on intermediate states.

• You may have more than one RETELL statements for the same object in the same
transaction. In that case the updates, of each RETELL statement are executed in
order the parser finds them. Inside a RETELL statement all update operations are
commutative. You cannot update an object defined first time in the same
transaction.

3.1 The RETELL grammar
A grammar for RETELL statement

RETELL_statement:: "RETELL" current_object [Component_section]
[hierarchies_relations]

 "end" [object]
| "RETELL" Individual_or_Attribute [hierarchies_relations]
 "end" [object]

Individual_or_Attribute::= "Individual" current_object S_IN_Clause

October 1998/v2.2 -22- ICS-FORTH

SIS-Data Entry Language, User’s Manual

 | "Attribute" current_object Component_section
 S_IN_Clause

Component_section::= "from" ":" object
 "to" ":" object

hierarchies_relations::= {clause}

clause::= IN_Clause
 | ISA_Clause
 | WITH_Clause

S_IN_Clause::= "in" Built_in_class "," object

IN_Clause::= "in" object "," object

ISA_Clause::= "isA" object "," object

WITH_Clause::= "with" List_of_attribute_classes List_of_attributes

List_of_classes::= object "," object

List_of_attributes::= object {";" object}

Built_in_class::= "Token" /* At this statement we define the instance */
 | "S_Class" /* level of each object */
 | "M1_Class"
 | "M2_Class"
 | "M3_Class"

 | "M4_Class"

object::= | /* Special Addition for a nonnamed attribute */
 | identifier /* General Addition */

 | identifier "#" /* General Deletion */
 | identifier "@" identifier /* General Change */
 | "attof" identifier {"," identifier}
 /* Special Addition for a attribute defined */
 /* by its categories */
 | "attof" identifier {"," identifier} "#"
 /* Special Rename of a attribute defined by its categories */

 /* to a nonnamed attribute */
 | "attof" identifier {"," identifier} "@" identifier
 /* Special Change of a attribute name defined by its */
 /* categories to physical name */

In fact the RETELL grammar is more complicated, but this simple form will help the
reader to understand how the RETELL works.

3.2 How RETELL works
As you can see in the RETELL grammar there are two formats for a RETELL
statement. When you use the first and simpler RETELL statement you want to update
an object that already exists in SIS base from a previous transaction.

 October 1998/v2.2 -23- ICS-FORTH

SIS-Data Entry Language, User’s Manual

The second RETELL statement is closer to a TELL statement, this RETELL
statement is used when you want to update an object, but you do not know if that
object exists in SIS base. In that case it is necessary to define the type of object
("Individual" or "Attribute") and the instance level (every object must be instance of
one Builtin Class). If the object exists in SIS base, parser checks if the type and the
instance level in the RETELL statement are the same with the type and the instance
level that object already has in SIS base. If there are not the same there is a conflict
error.

The <object> in the RETELL grammar may be the name of any object in the SIS
base. With <object> we can define both the name of an object and the particular
update operation (Add,Delete, change) between the <current_object> and the
<object>.

When we use it in <IN_Clause> we update the instance hierarchies, or when we use it
in <ISA_Clause> we update ISA hierarchies between <current_object> and <object>.

Update operations can be additions, deletions, and changes. A change is defined as a
conditional deletion followed by an addition, depending on the existence of the
information to be deleted. First all updates are collected and divided into two sets: the
deletions and additions. Then all deletions are executed on the base of the state
previous to the current RETELL statement, leading to an inconsistent intermediate
state. Then all additions are executed leading to the final consistent database state.

In <WITH_Clause> we update the attributes that belong to the <current_object> by
listing them in <List_of_attributes>. In <List_of_attributes> we can both define
attributes and update operations on these attributes. Update operations can be
additions, deletions, and changes. A change is defined as a conditional deletion
followed by an addition, depending on the existence of the information to be deleted.
In the execution of a RETELL <WITH_Clause>, first all updates are collected and
divided into two sets: the deletions and additions. Then all deletions are executed on
the base of the state previous to the current RETELL statement, leading to a
inconsistent intermediate state. Then all additions are executed leading to the final
consistent database state. This state is used for updating instance hierarchies between
any element of the set, which is defined in <List_of_attributes> and the attribute
classes, which are defined in <List_of_classes>.

3.3 How we define an object
As you can see with <object> we can refer an object or an attribute. When we use the
<object> to refer an object, <object> is the name of object referred. If we need to refer
to an attribute, <object> has the form "name from From_object". e.g Recall the
previous example in figure 6.

1 " U " is an <object>

2 " P " is an <object>

3 " X From U " is an <object>

4 " X From P " is an <object>

5 " z From O " is an <object>

October 1998/v2.2 -24- ICS-FORTH

SIS-Data Entry Language, User’s Manual

Sometimes you can avoid referencing the From_object. e.g If object O (in figure 6) is
only an instance of P not an instance of U You can omit the from_clause when we
referencing to attribute X . So

6 " X " is an <object>

When we refer an attribute, we use two <object>'s, the Label and the To_object, and
attribute has the form "Label: To_object".

Because the Label of an attribute is unique within the From_object, we can avoid
To_object so attribute may also have the form "Label: ".

If we want to refer a no name attribute we write “: To_object".

Sometimes it's desirable to refer an attribute or a set of attributes only with its class
name and its To_object. In this case the attribute has this format " attof class1,
class2...: To_object". So you can not have more than one attributes with the same set
of classes and the same To_object.

If we want to refer all attributes which they starts from "From_object" we write " attof
attribute:". Because "class attribute" is the union of all attribute classes in SIS base.

If we want to refer an attribute or a set of attributes only with it's class name we write
" attof class1, class2... :".

If we want to refer an attribute or a set of attributes only with it's To_object we write "
attof attribute: To_object".

Because all "To_object" are individual objects in SIS base we use the keyword
"individual" to present any possible "To_object". e.g

"attof class1, class2 From Object_A : individual"

We have the same result with

"attof class1, class2 From Object_A :"

If we delete the To_object the attribute is deleted. The following example will
illustrate that :

Let's make the assumption that "Maria", "Nick", "Tom", "John" are all objects in SIS
base and object "Maria" has the following relations:

"Maria has_father Nick"
"Maria has_husband Tom"
"Maria lives_with Tom"
"Maria has_lover John"

Relation "has_father" and "has_husband" are instance of class "Family_relations",
and relation "has_lover" with relation "has_husband" are instance of class
"Sex_relations", relation "lives_with" is an instance of class "Social_relations".

BEGINTRANSACTION

TELL Individual Maria in Token, Women_Class

 October 1998/v2.2 -25- ICS-FORTH

SIS-Data Entry Language, User’s Manual

with Family_relations
 has_father : Nick

with Social_relations
lives_with : Tom

with Sex_relations
has_lover : John

with Sex_relations, Family_relations
 has_husband : Tom
 end Maria

ENDTRANSACTION

With attribute " has_father : Nick " we refer the attribute {has_father}.

With attribute " has_father :" we also refer the attribute {has_father}.

With attribute " attof attribute : "
 or " attof attribute : individual"
 or " : individual"
we refer the set of all the attributes {has_father, lives_with, has_lover, has_husband}.

With attribute " attof attribute : Nick" we refer the attribute
{has_father}.

With attribute " attof attribute : Tom" we refer the set of attributes
{has_husband, lives_with}.

With attribute "attof Family_relations : Nick" we refer the attribute
{has_father}.

With attribute "attof Family_relations :"
 or "attof Family_relations : individual"
we refer the set of attributes {has_father, has_husband}.

With attribute "attof Family_relations, Sex_relations :"
we refer the attribute {has_husband}.

With attribute "attof Family_relations, Sex_relations : Tom"
we also refer the attribute {has_husband}.

But attribute "attof Family_relations, Sex_relations :John" does
not exist in SIS base, because there is no relation between "Maria" and "John" as an
instance either of "Family_relations" or "Sex_relations".

3.4 How we define an operation on a particular object
Up to now we have seen how we define every object or attribute or set of attributes in
SIS base with the <object>. Recall that every object in SIS base has single and set
values, these values contains object ids from SIS base. RETELL designed to update
these values. All potential uses of RETELL are to Add, Delete or Change the contains
of these values. According to these three functions of a RETELL statement (Add,
Delete, Change) when we refer to an object with <object> we also define and the
operation between <object> and the particular single or set values.

October 1998/v2.2 -26- ICS-FORTH

SIS-Data Entry Language, User’s Manual

 To accomplish that we use three notations for <object>

1. <object>
Means ADD the Object, if object does not exist. if object exists and has the
same form this operation has no effect. If object exists but has a different
form, e.g different To_object (" has_friend : John" the old form, " has_friend
: Tom" the new form) it is error, because Telos parser does not know if you
really want to change the old form of Object.

2. <object> #
Means DELETE the Object, if object exists. if object does not exist this
operation has no effect.

3. <object1> @ <object2>
Means Change object1 to object2 if object1 exists. if object1 does not exist
this operation has no effect.

3.5 Examples
To become more familiar with the RETELL statement we present the following
examples:

If you want to ADD an instance relation of Object_A to CLASS_A

RETELL Object_A in CLASS_A end

If you want to ADD an instance relation of Object_A to CLASS_A,CLASS_B

RETELL Object_A in CLASS_A, CLASS_B end

If you want to DELETE an instance relation of Object_A to CLASS_C

RETELL Object_A in CLASS_C # end

If you want to ADD an instance relation of Object_A to CLASS_A, CLASS_B and
DELETE an instance relation of Object_A to CLASS_C

RETELL Object_A in CLASS_A, CLASS_B, CLASS_C # end

If you want to REDIRECT an instance relation of Object_A to CLASS_A to
CLASS_B

RETELL Object_A in CLASS_A @ CLASS_B end

Be careful!!! This statement is different from this

RETELL Object_A in CLASS_A #, CLASS_B end

The first statement checks if instance relation of Object_A to CLASS_A can be
replaced by instance relation of Object_A to CLASS_B. The second statement just
delete instance relation of Object_A to CLASS_A and add an instance relation of
Object_A to CLASS_B.

If you want to ADD an isA relation of CLASS_A to CLASS_B

 October 1998/v2.2 -27- ICS-FORTH

SIS-Data Entry Language, User’s Manual

RETELL CLASS_A isA CLASS_B end

If you want to ADD an instance relation of CLASS_A to MCLASS_M and an isA
relation of CLASS_A to CLASS_B

RETELL CLASS_A in MCLASS_M isA CLASS_B end

If you want to ADD an instance relation of CLASS_A to MCLASS_M and DELETE
an isA relation of CLASS_A to CLASS_B

RETELL CLASS_A in MCLASS_M isA CLASS_B # end

If you want to ADD an instance relation of CLASS_A to MCLASS_M and an isA
relation of CLASS_A to CLASS_B and REDIRECT an isA relation of CLASS_A to
CLASS_C to CLASS_D

RETELL CLASS_A in MCLASS_M isA CLASS_B, CLASS_C @
CLASS_D
end

If you want to ADD the attribute " has_father : Nick " to object "Maria"

 RETELL Maria
 with Family_relations
 as_father : Nick h

end

The attribute " has_father : Nick" is an instance of object "Family_relations"

If you want to ADD the attributes " has_father : Nick ", " has_husband : Tom",
"lives_with : Tom", "has_lover : John" to object "Maria"

 RETELL Maria

with Family_relations
has_father : Nick;
has_husband : Tom

with Social_relations
lives_with : Tom

with Sex_relations
has_husband : Tom;
has_lover : John

 end

If you want to ADD a nonname attribute which is an instance to "Family_relations"
and pointing to "Nick", and the attribute "has_husband" which is also an instance to
"Family_relations"

RETELL Maria

with Family_relations
 : Nick;

has_husband : Tom

October 1998/v2.2 -28- ICS-FORTH

SIS-Data Entry Language, User’s Manual

end

If you want to make all attributes which they start from "Maria" and are instances of
"Family_relations" to be instances of "Social_relations"

RETELL Maria
with Social_relations

attof Family_relations :
end

This example is the previous example with one more constrain, attributes owes point
to "Nick"

RETELL Maria
with Social_relations

attof Family_relations : Nick
end

If you want to make all attributes which they start from "Maria" and are both
instances of "Family_relations" and "Sex_relations", " to be instances of
"Social_relations"

RETELL Maria
with Social_relations

attof Family_relations, Sex_relations :
end

This example is the previous example with one more addition, the attribute "
has_friend : George "

RETELL Maria
with Social_relations

attof Family_relations, Sex_relations :;
has_friend : George

end

If you want to delete all attributes which they start from "Maria" and are instances of
"Family_relations" and pointing to "Nick", and add the attribute "has_lover : John"

RETELL Maria
with attribute

attof Family_relations : Nick #;
has_lover : John

end

In previous example, we also want to delete all attributes that starts from "Maria" and
pointing to "Tom"

RETELL Maria
with attribute

attof Family_relations : Nick # ;
attof attribute : Tom # ;

has_lover : John

 October 1998/v2.2 -29- ICS-FORTH

SIS-Data Entry Language, User’s Manual

end

If you want to redirect the attribute "has_friend : George" to pointing to "John"

RETELL Maria
with attribute

has_friend : George @ John
end

If you want to Change attribute "has_friend : George" to " has_boy_friend : John"

RETELL Maria
with attribute

has_friend @ has_boy_friend :George @ John
end

If you to change attribute "has_friend" to " has_boy_friend" and don't want to
change (or you don't now) the To_object

RETELL Maria
with attribute

has_friend @ has_boy_friend :
end

If you want to change the attribute with name "has_friend " to attribute
"has_boy_friend " which pointing to "John"

RETELL Maria
with attribute

has_friend @ has_boy_friend : John
end

If you want to redirect all attributes which pointing to "George" pointing to "John"

RETELL Maria
with attribute

attof attribute : George @ John
end

If you want to make all attributes which are instances of "Sex_relations" pointing to
"John", and replace the attribute "has_father" (if exist) with attribute
"has_grand_father", and add the attribute "has_friend : George"

RETELL Maria
with attribute

attof Sex_relations : individual @ John;
has_father @ has_grand_father :;
has_friend : George

end

In previous example we use the Keyword "individual" to present any object but
attribute in SIS base.

October 1998/v2.2 -30- ICS-FORTH

SIS-Data Entry Language, User’s Manual

If you want to delete all attributes which are instances of "Sex_relations" and to add
new attributes under this category

RETELL Maria
with Sex_relations

attof Sex_relations : # ;
new_lover : George

end

Now let's have a full example with RETELL

RETELL Maria in Person,woman @ young_woman
with Family_relations,

Social_relations @ Sex_relations
has_friend : George;

attof Sex_relations : individual @ John;
has_husband # :

end

This RETELL statement adds an instance relation to object "Maria" pointing to
object class "Person". If an instance relation exists pointing from object "Maria" to
object "woman" this relation is redirected pointing to object "young_woman". Then
RETELL deletes the attribute "has_husband" from object "Maria", adds the attribute
" has_friend : George" and then redirects all attributes which are instances of class
"Sex_relations" pointing to object "John". Then all attributes that are referenced in
<WITH_CLAUSE> and have not been deleted will be instance of class
"Family_relations" and if some of them are instance of class "Social_relations" their
instance relations to "Social_relations" will be redirected pointing to "Sex_relations".

Final in the RETELL statement we may have more than one <IN_Clause> or
<ISA_Clause> or <WITH_CLAUSE>. You can mix TELL and RETELL statements
in one Transaction. e.g

BEGINTRANSACTION

TELL

RETELL

TELL
.
.
.

RETELL ...

TELL ...

ENDTRANSACTION

4. Appendix A - Reserved Keywords

 October 1998/v2.2 -31- ICS-FORTH

SIS-Data Entry Language, User’s Manual

any_category

attof

Attribute

attribute

AttributeClass

Attribute_M1_Class

Attribute_M2_Class

Attribute_M3_Class

Attribute_M4_Class

Attribute_S_Class

Attribute_Token

BEGINTTANSACTION

Cin

CisA

Class

components

end

ENDTRANSACTION

from

in

Individual

IndividualClass

IndividualClass

Individual_M1_Class

Individual_M2_Class

Individual_M3_Class

Individual_M4_Class

Individual_S_Class

Individual_Token

isA

label

M1_Class

M2_Class

M3_Class

M4_Class

OmegaClass

Proposition

RETELL

S_Class

TELL

Telos_Class

Telos_Integer

Telos_Object

Telos_Real

Telos_String

Telos_Time

to

Token

with

October 1998/v2.2 -32- ICS-FORTH

SIS-Data Entry Language, User’s Manual

 October 1998/v2.2 -33- ICS-FORTH

5. Appendix B - Changes from previous
versions

5.1 Changes fron version 1.3 to 1.3.1
This manual was updated to include the description of the Telos_Time primitive type
declaration and handling.

5.2 Changes from version 1.3.1 to version 2.0
None. The manual version-numbering follows the code version-numbering.

5.3 Changes from version 2.0 to version 2.1
The following Telos_Time period expressions changed from
[a'/b' half (number) century] to [1st/2nd half (number) century]
[a'/b'/c'/d' quarter (number) century] to [1st/2nd/3rd/4th quarter (number) century].

SIS-Data Entry Language, User’s Manual

October 1998/v2.2 -34- ICS-FORTH

6. References
[1] M. Koubarakis, J. Mylopoulos, M. Stanley and A. Borgida, Telos Features and

Formalization, Institute of Computer Science Forth, Technical Report
FORTH/CSI/TR/1989/018, Febr. 1989 also University of Toronto, Computer
Science Dept., Technical Report KRR-TR-89-4, Febr. 1989

[2] T. Topaloglou and M. Koubarakis, Implementation of Telos: Problems and
Solutions, University of Toronto, Computer Science Dept., Technical Report
KRR-TR-89-8, May 1989.

[3] ITHACA.FORTH.91.E2.#4, SIB Contents' Manual

[4] ITHACA.FORTH.92.E2.#2, Implementation of the SIB System

[5] Petersen T. and Barnett J. P.(editors), Guide to Indexing and Cataloging Art
and Architecture Thesaurus, Oxford University Press, 1994, p.47-50.

SIS-Data Entry Language, User’s Manual

Index
A

any_category ...32
attof..........................23, 25, 26, 29, 30, 31, 32
attribute4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18,

19, 20, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32
Attribute5, 6, 10, 12, 16, 17, 18, 21, 22, 23, 24,

32
Attribute_M1_Class32
Attribute_M2_Class32
Attribute_M3_Class32
Attribute_M4_Class32
Attribute_S_Class..32
Attribute_Token ..32
AttributeClass ..5, 32

B

BEGINTTANSACTION.............................32

C

Cin ...32
CisA...32
Class5, 8, 11, 24, 26, 32
components..32

E

end6, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 26,
27, 28, 29, 30, 31, 32

ENDTRANSACTION...11, 13, 16, 17, 18, 26,
31, 32

F

from ...4, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 21,
22, 23, 24, 25, 26, 27, 29, 31, 32, 33

I

in 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
31, 32

Individual5, 6, 7, 10, 11, 12, 13, 16, 17, 18,
19, 20, 21, 22, 23, 24, 26, 32

Individual_M1_Class32
Individual_M2_Class32
Individual_M3_Class32
Individual_M4_Class32
Individual_S_Class..............................6, 7, 32
Individual_Token ..32

IndividualClass 5, 7, 32
isA..... 5, 6, 7, 9, 10, 12, 16, 17, 21, 23, 28, 32

L

label... 8, 12, 32

M

M1_Class 6, 11, 18, 22, 23, 32
M2_Class .. 22, 23, 32
M3_Class .. 22, 23, 32
M4_Class 6, 22, 23, 32

O

Object.. 5
OmegaClass .. 32

P

Proposition.. 32

R

RETELL . 4, 22, 23, 24, 26, 27, 28, 29, 30, 31,
32

S

S_Class6, 7, 11, 12, 13, 16, 17, 18, 19, 20, 22,
23, 32

T

TELL. 6, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21,
22, 24, 26, 31, 32

Telos_Class... 5, 7, 32
Telos_Integer 7, 13, 32
Telos_Object... 5, 32
Telos_Real .. 7, 13, 32
Telos_String................................ 7, 13, 19, 32
Telos_Time 7, 13, 32, 33
to 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34

Token 6, 10, 12, 13, 16, 17, 18, 19, 20, 21, 22,
23, 26, 32

W

with . 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32

 October 1998/v2.2 -35- ICS-FORTH

	Overview of the SIS data entry language (Telos)
	General information
	Changed features from the original Telos design
	General Concepts of the Datamodel

	The TELL statement
	Names of attributes
	Examples
	SIS EXAMPLES
	A grammar for the TELL statement

	The RETELL statement
	The RETELL grammar
	How RETELL works
	How we define an object
	How we define an operation on a particular object
	Examples

	Appendix A - Reserved Keywords
	Appendix B - Changes from previous versions
	Changes fron version 1.3 to 1.3.1
	Changes from version 1.3.1 to version 2.0
	Changes from version 2.0 to version 2.1

	References

