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Abstract

A method is proposed for the visual detection of objects that move inde-

pendently of the observer in a 3D dynamic environment. Many of the existing

techniques for solving this problem are based on 2D motion models, which is

equivalent to assuming that all the objects in a scene are at a constant depth

from the observer. Although such methods perform well if this assumption holds,

they may give erroneous results when applied to scenes with large depth vari-

ations. Additionally, many of the existing techniques rely on the computation

of optical ow, which amounts to solving the ill-posed correspondence problem.

In this paper, independent 3D motion detection is formulated using 3D models

and is approached as a problem of robust regression applied to visual input ac-

quired by a binocular, rigidly moving observer. Similar analysis is applied both

to the stereoscopic data taken by a non-calibrated stereoscopic system and to the

motion data obtained from successive frames in time. Least Median of Squares

(LMedS) estimation is applied to stereoscopic data to produce maps of image

regions characterized by a dominant depth. LMedS is also applied to the motion

data that are related to the points at the dominant depth, to segment the latter

with respect to 3D motion. In contrast to the methods that rely on 2D models,

the proposed method performs accurately, even in the case of scenes with large

depth variations. Both stereo and motion processing is based on the normal ow

�eld which can be accurately computed from the spatiotemporal derivatives of

the image intensity function. Although parts of the proposed scheme have non-

trivial computational requirements, computations can be expedited by various

ways which are discussed in detail. This is also demonstrated by an on-board

implementation of the method on a mobile robotic platform. The method has

been evaluated using synthetic as well as real data. Sample results show the

e�ectiveness and robustness of the proposed scheme.



1 Introduction

Because of the egomotion of an observer equipped with visual sensors, his visual �eld

appears to be moving in a manner that depends on the observer's 3D motion parameters

and the structure of the scene in view. In case that certain objects move independently,

the 3D velocity of the observer relative to all points in its environment is not the same.

The problem of independent 3D motion detection is de�ned as the problem of locating

such objects, if they exist in a scene.

The ability to detect independent 3D motion is very important for an observer that

interacts with a dynamic environment. It is known [1] that independent motion detec-

tion is one of the basic visual competences of most of the biological organisms possessing

the sense of vision. More complex behaviors like obstacle avoidance, visual target track-

ing and surveillance seem to be based on the perceptual information provided by such

mechanisms. The ability to detect independent motion is also very crucial for robots

that should navigate autonomously in dynamic environments.

The importance of visual motion understanding in general, and of independent 3D

motion detection1 in particular, has been recognized for years and a lot of work has

been done along this research direction. A lot of this work depends on the accurate

computation of the optical ow �eld [2, 3]. Moreover, in many cases 2D motion models

(a�ne or quadratic) have been employed [2, 4]. Independent motion detection is usually

achieved by detecting the discontinuities (in the 2D model) and reporting them as 3D

motion discontinuities. This has been approached using a variety of techniques. In

[5] robust statistics, and more speci�cally M-estimators are used to distinguish the

dominant 2D motion from the secondary 2D motions. A similar idea is exploited by

Ayer et al in [6], where two other robust estimators, namely Least Median of Squares

and Least Trimmed Squares are used to discriminate the dominant from the secondary

2D motions. Bouthemy and Francois [7] present a motion segmentation method relying

on 2D a�ne motion models and a statistical regularization approach.

Most of these methods produce good results in certain classes of scenes. However,

1In the remainder of this paper and, unless it is explicitly stated otherwise, we will refer to the

problem of independent motion detection for the case of a moving observer.
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the methods that are based on the computation of optical ow tend to eliminate the

e�ect they are trying to detect, because optical ow computation is based on the as-

sumption of a smooth motion �eld which, by de�nition, does not hold for scenes with

independently moving objects. Another drawback stems from the 2D motion models

they employ. The projection of 3D motion on the 2D image plane depends on certain

characteristics of the observer (e.g. focal length of the optical system), on the parame-

ters of the relative 3D motion between an object and the observer and, on the depth of

the scene. Therefore, discontinuities in the computed 2D motion �eld are not only due

to 3D motion discontinuities (i.e. independently moving objects), but also due to depth

discontinuities. For this reason, methods that employ 2D models of motion perform

well only in scenes where depth variations are small compared to the distance from the

observer. In cases of scenes with large depth variations, these methods fail to provide

reliable results.

In an e�ort to overcome the inherent problems of employing 2D models of motion, the

more accurate 3D models have been employed. By employing 3D models the problem

becomes much more complicated because extra variables are introduced regarding the

depth of the scene points. Thus, certain assumptions are made in order to provide

additional constraints. Common assumptions of existing methods are related to the

motion of the observer, the structure of the scene in view, or both. Moreover, in the

majority of reported works, it is assumed that either a dense optical ow �eld or a

sparse set of point correspondences can be computed from a set of images. Jain [3] has

considered the problem of independent 3D motion detection by an observer pursuing

translational motion. In addition to imposing constraints on egomotion (the observer's

motion cannot have rotational components), knowledge of the direction of translation

is required. Adiv [8] performs segmentation by assuming planar surfaces undergoing

rigid motion, thus introducing an environmental assumption. Thompson and Pong [9]

derive various principles for detecting independent motion when certain aspects of the

egomotion or of the scene structure are known. Although it is an inspiring work, the

practical exploitation of the underlying principles is limited because of the assumptions

they are based on and open implementation issues.

Some alternative methods that follow the active and purposive vision paradigm [10,
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11, 12], do not rely directly on the estimation of the parameters of a motion model,

but rather on qualitative geometrical properties of the normal ow �eld. Thus, the

solution of the structure from motion problem is by-passed. A method that falls in this

context has been proposed by Sharma and Aloimonos [13]. However, as in the case

of [3], restricted (translational) egomotion is assumed. Nelson [14] presents two such

methods for independent motion detection. The �rst of these methods requires a priori

knowledge of egomotion parameters and assumes upper bounds on the depth of the

scene. The second method detects abrupt changes of independent motion, rather than

independent motion itself. Despite their theoretical elegance, these methods su�er in

that they perform independent motion detection by assuming either known or restricted

egomotion.

In this paper, the problem of independent motion detection is formulated using 3D

motion models and is approached as a robust regression problem. Robust regression

has also been employed in the past in the problem of motion segmentation. Ayer et

al [6] have proposed a method which uses robust regression to identify independently

moving objects. However, since no information on scene structure is used, the method

works well only when the scene in view forms a frontoparallel plane.

The capability that has been developed (henceforth referred to as IMDRR2) makes

use of the Least Median of Squares (LMedS) estimation technique [15]. LMedS is ini-

tially applied to the stereoscopic data that are acquired by the binocular observer, to

separate the set of image points in two subsets: stereo inliers and stereo outliers. The

stereo inliers correspond to the dominant scene depth, while the stereo outliers corre-

spond to the rest of the scene points. At a second stage, LMedS is applied to the motion

data that correspond to the points of the dominant depth. This second application of

LMedS results in a segmentation of the points at the dominant depth into motion inliers

and motion outliers. Motion inliers correspond to the dominant motion (egomotion),

whereas motion outliers can only be due to independent motion. The exploitation of

stereo information relaxes the constraint of a strictly frontoparallel scene that other

methods assume (e.g. [6]).

2
IMDRR is an acronym for Independent Motion Detection based on Robust Regression.
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The motion analysis component of IMDRR is based on the spatiotemporal deriva-

tives of the image intensity function (normal ow). The ill-posed problem of point

correspondence is also avoided for the stereo case. The stereo con�guration is treated

as the hypothetical motion that would map the position of the left camera to the po-

sition of the right camera. Again, normal ow is computed between the two frames of

the stereo pair.

Regarding the egomotion of the imaging system, it is assumed to be a rigid motion.

This is a valid assumption because, although an observer may move in a non-rigid

fashion, all biological eyes and arti�cial cameras are essentially rigid. The motion of

the independently moving objects, however, is not constrained to be rigid. Since the

method does not rely on the estimation of motion parameters for independently moving

objects, no particular assumptions are actually made regarding their motion.

The rest of the paper is organized as follows. Section 2 describes the geometry of the

imaging system, the input used by IMDRR and the 3D motion models employed. Sec-

tion 3 is a brief introduction to robust regression and the LMedS estimation technique,

for the sake of self-completeness of the paper. Section 4 describes IMDRR in detail and

section 5 focuses on the implementation and performance issues of IMDRR. In Section

6, experimental results from the application of IMDRR to synthetic data and real world

image sequences are presented and discussed. Finally, section 7 concludes the paper

and gives directions for future research work.

2 The visual input

Before proceeding with the description of IMDRR, the geometry of the imaging system,

the input to the motion and stereo processing modules and the 3D motion models em-

ployed are presented. Moreover, the choice of the normal ow �eld in all computations

is justi�ed.
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2.1 The coordinate system

Consider a coordinate system OXY Z centered in the optical center (nodal point) of a

camera, such that the axis OZ coincides with the optical axis. Suppose that the camera

is moving rigidly with respect to its 3D static environment with translational motion

~t = (U; V;W ) and rotational motion ~! = (�; �; ), as shown in Fig. 1.

The equations relating the 2D velocity (u; v) of an image point p(x; y) to the 3D

velocity of the projected 3D point P (X;Y;Z), under perspective projection, are given

by [16]:

u =
(�Uf + xW )

Z
+ �

xy

f
� �

 
x2

f
+ f

!
+ y (1a)

v =
(�V f + yW )

Z
+ �

 
y2

f
+ f

!
� �

xy

f
� x; (1b)

where f represents the focal length of the imaging system.

2.2 Motion �eld - optical ow �eld

Equations (1) describe the 2D motion vector �eld, which relates the 3D motion of a

point with its 2D projected motion on the image plane. The motion �eld is a purely

geometrical concept and, it is not necessarily identical to the optical ow �eld [17],

which describes the apparent motion of brightness patterns observed because of the

relative motion between an imaging system and its environment. Verri and Poggio [18]

have shown that the motion and optical ow �elds are identical in speci�c cases only.

Even in the case that these two �elds are identical, the computation of the optical

ow �eld is an ill-posed problem [19], since special conditions (such as smoothness)

should be satis�ed for a unique solution to exist. Such conditions are not satis�ed

in practice, especially in the case of independent motion, where by de�nition motion

discontinuities do exist. Furthermore, although progress on optical ow computation

has been made [20, 21, 22], it is well known that the estimation of 3D motion is very

sensitive to the presense of noise in the optical ow �eld [23, 24, 25].

For the above reasons, the proposed scheme for independent motion detection does

not rely on the computation of the optical ow �eld, but rather on the normal ow �eld,
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i.e. the projection of optical ow on the direction of intensity gradient. The normal

ow �eld has also been used in the past for both egomotion estimation [26, 27, 28] and

independent motion detection [14, 13].

2.3 Normal ow �eld - normal motion �eld

Assuming that a sequence of images can be modeled as a continuous function I(x; y; t)

of two spatial (x; y) and one temporal (t) variables, and that irradiance is conserved

between two consecutive frames, it is possible to write the well known optical ow

constraint equation [29] at each image point:

Ixu+ Iyv + It = 0 (2)

where (u; v) is the optical ow vector at point (x; y) and Ix; Iy; It are the partial deriva-

tives of function I with respect to variables x; y and t. Equivalently, eq (2) can be

written in the form of a dot product

(Ix; Iy) � (u; v) = �It; (3)

Equation (3) constitutes the mathematical expression of the aperture problem. Opti-

cal ow cannot be recovered based on local information only. What can be computed is

the projection of optical ow along the direction of image spatial gradients, also known

as normal ow. Figure 2 gives a schematic view of the aperture problem.

According to eq (3), the magnitude unm of the normal ow is equal to

unm = �
Itq

I2x + I2y
(4)

The normal ow �eld is not necessarily identical to the normal motion �eld (the

projection of the motion �eld on the direction of the image spatial gradient), in the

same way that the optical ow is not necessarily identical to the motion �eld. In [18],

it is shown that the di�erence between the algebraic values of a normal ow vector

and a normal motion vector is equal to 1

jjrIjj
dI
dt
, where jjrIjj is the magnitude of the

intensity gradient and dI

dt
is the time derivative of the intensity function. Therefore, the

normal ow �eld is a good approximation of the normal motion �eld in points where
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the intensity gradient has a large value. Normal ow vectors at such points can be used

as a robust input to 3D motion analysis.

2.4 Normal ow �eld due to motion

Let (nx; ny) be the unit vector in the gradient direction. The magnitude unm of the

normal ow vector is given as

unm = unx + vny (5)

which, by substitution from eq (1), yields:

unm = �nxf
U

Z
� nyf

V

Z
+ (xnx + yny)

W

Z
+

+

(
xy

f
nx

 
y2

f
+ f

!
ny

)
��

( 
x2

f
+ f

!
nx +

xy

f
ny

)
� + (ynx � xny) (6)

Equation (6) highlights some of the inherent di�culties of independent motion de-

tection. Each image point (in fact, each point at which the intensity gradient has a

signi�cant magnitude) provides one constraint on the 3D motion parameters. In case

that only the observer is moving, the above equation holds for each point and for

one speci�c unknown set of 3D egomotion parameters (UE; VE;WE), (�E; �E; E). In

the case of independent motion, there is at least one more set of motion parameters

(UI ; VI ;WI), (�I ; �I ; I) that is valid for some of the image points. Furthermore, if no

assumption is made regarding the depth Z, each point provides at least one independent

depth variable. Evidently, the problem cannot be solved if no additional depth infor-

mation is available. Equation (6) also shows why the problems of egomotion estimation

and independent motion detection can be considered as chicken-and-egg problems. If

egomotion is known, then it can be compensated and, therefore, independent motion

detection is greatly facilitated. On the other hand, if independently moving objects

have not been previously identi�ed, each image point may or may not be part of an

independent motion; egomotion estimation would then be confused by the wrong evi-

dence provided by the points belonging to an independently moving object. For this

reason, a lot of techniques for estimating egomotion [26, 27, 28, 30] assume the absence

of independently moving objects.
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2.5 Normal ow �eld due to stereo

Consider the typical stereo con�guration of a �xating pair of cameras, as shown in Fig.

3(a). This type of con�guration may easily be achieved by existing mechanical heads

[31] and is very common in biological organisms, including humans.

The images acquired simultaneously by a stereoscopic system encapsulate informa-

tion relevant to depth, that manifests itself in the form of disparities de�ned by the

displacements of points between images. Since these images are acquired simultane-

ously, there is no dynamic change in the world that can be recorded by them. It can

easily be observed that a stereo image pair is identical to the sequence that would

result from a hypothetical (ego)motion that brings the one camera to the position of

the other. The hypothetical motion that transforms the position of one camera to the

other is simpler than the one described by the general motion model of eq (1). Fig. 3(b)

shows the motion that maps the position of the left camera, to the position of the right

camera. Evidently, there is no rotation around the X and Z axes, and no translation

along the Y axis. Consequently, if (Us; 0;Ws) and (0; �s; 0) are the translational and

rotational parameters of the hypothetical motion, then at each point, a normal ow

value uns due to stereo may be computed, which is equal to

uns = �nxf
Us

Z
+ (xnx + yny)

Ws

Z
�

( 
x2

f
+ f

!
nx +

xy

f
ny

)
�s (7)

In practical situations, the computation of normal ow from a pair of stereo images

needs further consideration. The computation of normal ow is based on the opti-

cal ow constraint equation, which does not hold if the two images di�er too much.

Moreover, normal ow is computed from discrete images through spatial and temporal

di�erentiation with small masks. In the case that 5 � 5 masks are used, every normal

ow that is more than 3 - 4 pixels is not reliable. We may observe, however, that

since normal ow is the projection of optical ow in a certain direction, the value of

normal ow at a certain point is bounded by the value of optical ow. Thus, we may

select suitable stereo con�gurations for which the maximum obtained optical ow (and

consequently the maximum normal ow) does not exceed a certain upper bound. Ad-

ditionally, the normal ow magnitude is expressed in pixels. By appropriately selecting

the spatial image resolution for the above computations, the requirements posed on the
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stereo con�guration can be drastically relaxed at the cost of a coarser estimation of the

normal ow �eld.

3 Robust regression

Regression analysis (�tting a model to noisy data) is a very important statistical tool.

In the general case of a linear model [32], given by the expression

yi = xi1�1 + : : :+ xip�p + ei; (8)

the problem is to estimate the parameters �k, k = 1; : : : ; p, from the observations yi,

i = 1; : : : ; n, and the explanatory variables xik. The term ei represents the error in each

of the observations. In classical applications of regression, ei is assumed to be normally

distributed with zero mean and unknown standard deviation. Let �̂ be the vector of

estimated parameters �̂1; : : : ; �̂p. Given these estimates, predictions can be made for

the observations:

ŷi = xi1�̂1 + : : :+ xip�̂p (9)

Thus, a residual between the observation and the value predicted by the model may be

de�ned as:

ri = yi � ŷi (10)

Traditionally, �̂ is estimated by the Least Squares (LS) method. LS involves the

solution to a minimization problem, namely:

Minimize
nX
i=1

ri
2 (11)

and achieves optimal results if the underlying noise distribution is Gaussian. However,

in cases where the noise is not Gaussian, the LS estimator becomes unreliable. The LS

estimator becomes highly unreliable also in the presence of outliers, that is observations

that deviate considerably from the model representing the rest of the observations.

One criterion for measuring the tolerance of an estimator with respect to outliers is its

breakdown point, which is de�ned as the smallest amount of outlier contamination that
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may force the value of the estimate outside an arbitrary range. As an example, LS has

a breakdown point of 0%, because a single outlier may have a substantial impact on

the estimated parameters.

In order to be able to handle data sets containing large portions of outliers, a variety

of robust estimation techniques have been proposed. Many of them have been used in

computer vision [33, 34, 35, 36, 32]. Meer et al [36] provide an excellent review of the

use of robust regression methods in computer vision.

Probably, the most popular robust estimators are the M-estimators [37, 32]. M-

estimators are based on the idea of replacing the sum of the squared residuals ri2

by another function of the residuals. The aim of these functions is to protect the

estimate from strongly outlying observations. However, M-estimators have two major

drawbacks. First, it can be shown that although they behave better than Least Squares

in practical situations, their breakdown point is equal to 1=n [32], where n is the number

of observations. This becomes equal to zero as n increases3. Second, it can be shown

that they require a reliable initial estimate of the model parameters because otherwise,

they can be trapped in local minima.

In an e�ort to provide robust estimators with a higher breakdown point, Rousseeuw

and Leroy [32] introduced the so-called S-estimators which are de�ned by minimizing a

robust measure of the scatter of the residuals. The Least Median of Squares (LMedS) is

an S-estimator which is described in detail in the next section. LMedS has a breakdown

point of 50%. It can be demonstrated that 50% is the highest possible breakdown point

of an estimator, because for larger outlier contaminations it is impossible to distinguish

the \good" from the \bad" data. Recently, a new robust regression method, namely

MINPRAN, has been proposed [34] which reports a breakdown point that is higher

than 50%. However, MINPRAN makes extra assumptions regarding the distribution of

the outliers. More speci�cally, it assumes a random distribution of the outliers and tries

to group data according to a linear model so that the probability of randomness of the

grouped data is minimized. The concept of MINPRAN is very interesting, although its

computational complexity poses restrictions on its practical exploitation.

3Note that the Least Squares method is in fact a trivial case of an M-estimator.
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3.1 Least Median of Squares (LMedS)

The LMedS method, which was originally proposed by Rousseeuw [15], involves the

solution of a non-linear minimization problem, namely:

Minimizefmediani=1;:::;nri
2g (12)

Qualitatively, LMedS tries to estimate a set of model parameters that best �t the

majority of the observations. The presence of some outliers in a set of observations

will not inuence LMedS estimation, as long as the majority of the data �t into the

particular model. More formally, LMedS has a breakdown point of 50%.

Once LMedS has been applied to a set of observations, a standard deviation estimate

may be derived:

�̂ = C
q
median ri2 (13)

where C is an application-dependent constant. Rousseeuw and Leroy [32] suggest a

value of

C = 1:4826

 
1 +

5

n� p

!
(14)

Based on the standard deviation estimate, a weight wi may be assigned to each obser-

vation

wi =

8><
>:

1; if jrij
�̂
� THR

0; if jrij
�̂
> THR

(15)

All points with weight wi = 1 correspond to model inliers, while points with weight

wi = 0 correspond to outliers. The threshold THR controls the sensitivity to outliers.

Typically, a value of 2.5 is used. This value reects the fact that in the case of a

Gaussian distribution, very few residuals should be larger than 2.5�̂. Note that the

criterion according to which the labels of inlier and outlier are assigned to data is itself

robust, since it involves calculations over the median of residuals. Moreover, the method

adjusts automatically to the noise levels of the observations. The better the estimated

model �ts to the observations, the smaller the median residual is and, therefore, the

�ner the outlier detection becomes.
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The computational requirements of LMedS are reported as high [32, 36]. This is

because LMedS involves a non linear minimization problem which must be solved by a

search in the space of possible estimates generated by the data. However, in section 5,

modi�cations are proposed, which improve the computational performance of LMedS.

4 Independent motion detection

The proposed method for independent 3D motion detection makes a twofold use of the

LMedS estimation technique. First, LMedS is applied to the stereo normal ow �eld,

according to eq (7). This results in a characterization of the image points as stereo

inliers (i.e. points that belong to a dominant depth) or as stereo outliers (i.e. points

that deviate from the dominant depth). More formally, let S denote the set of image

points where a reliable normal ow vector due to stereo has been computed. Then, the

above application of LMedS partitions S into two subsets, the stereo inliers SI and the

stereo outliers SO. Obviously,

S = SI
[
SO

SI
\
SO = ;

LMedS is subsequently applied to the motion normal ow �eld in the points of

SI , according to the model of eq (6). In general, this relation forms a linear model,

when depth Z and the motion parameters (U; V;W ) and (�; �; ) are constant for all

image points. In terms of LMedS estimation, the outliers of the linear model will be

points for which either Z deviates from a dominant depth, or points whose 3D motion

parameters are di�erent from the dominant motion. For the purpose of independent

motion detection, we are interested in the second class of points. Since the latter

application of LMedS is restricted to SI (points at dominant depth), the outliers of the

model can only be due to independent motion.
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4.1 The IMDRR algorithm

The complete 3D independent motion detection capability can now be described; a

block diagram of it is shown in Fig 4.

At time t, a pair of images Lt and Rt is acquired by the stereo con�guration. Both

images are smoothed producing SLt and SRt. The normal ow �eld NFs due to the

stereo con�guration is computed. To do so, the spatiotemporal derivatives of the image

intensity function are computed. Without loss of generality, we compute the temporal

derivatives assuming a left-to-right image transition. The image intensity gradient is

then thresholded; all points for which the magnitude of intensity gradient is lower

than a threshold, are removed from further consideration. NFs is fed into the LMedS

module that makes use of the model described by eq (7). The output of the LMedS

module is a partition of the scene points into two classes: stereo inliers (SI) and stereo

outliers (SO). Stereo inliers correspond to the dominant depth of the scene. Stereo

outliers correspond to either noisy observations (that is, points where a large error was

introduced in the computation of normal ow) or points with depth deviating su�ciently

from the dominant scene depth. Note that Us, Ws, and �s are the same in eq (7) for all

image points.

In a way completely analogous to that of stereo, the motion normal ow �eld NFm

is computed from smoothed images SRt�1 and SRt. By using the stereo inliers set SI ,

we mask out the points of NFm that correspond to the stereo outliers. The remaining

normal ow values are fed to the second LMedS module that makes use of the model

given by eq (6). The output of this second LMedS module is a partition of the points at

the dominant depth layer (SI) into motion inliers and motion outliers. Motion inliers

correspond to the motion with the largest spatial support. It is reasonable to assume

that this motion corresponds to egomotion. Motion outliers correspond to independent

motion. In other words, SI is further partitioned in this step into two subsets: (a) SE
I ,

that is image points that move according to the observer's egomotion and, (b) SIM
I ,

that is image points that move independently of the observer.

The above partition of SI may result in isolated points for a number of reasons.

The normal ow �eld is usually a sparse �eld, because normal ow values below a
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certain threshold are rejected. In some cases, points may become members of the inlier

or outlier classes due to errors in the computation of normal ow and not because of

depth variations or motion discontinuities. Finally, normal ow is just a projection

of the optical ow onto a certain direction. In�nitely many other optical ow vectors

have the same projection onto this direction and, consequently, a number of point

misclassi�cations may arise. We overcome the problem of isolated points by exploiting

the fact that, in the above cases, misclassi�ed points are sparsely distributed over the

image plane. A simple majority voting scheme is used. At a �rst step, the number of

inliers and outliers is computed in the neighborhood of each image point. The label of

this point becomes the label of the majority in its neighborhood. This allows isolated

points to be removed. In the resulting map, the label of the outliers is replicated in

a small neighborhood in order to group points of the same category into connected

regions.

Points that are �nally classi�ed as independently moving, may belong to an inde-

pendent rigid or nonrigid motion. No model is actually assumed by IMDRR for the

independent motion. The rigid motion model is assumed only for egomotion.

5 IMDRR implementation

The implementation of IMDRR follows closely the block diagram of Fig 4. In this section

an attempt is made to elaborate on implementation issues pertaining to IMDRR and

also to demonstrate its amenability to parallel implementation.

The �rst step in IMDRR is image smoothing, which is implemented by the con-

volution of the input images with a 5 � 5 Gaussian kernel with standard deviation

�G = 1:4. Image smoothing is a characteristic example of low level, data parallel al-

gorithms [38]. The parallelization of such algorithms has been extensively studied [39],

and e�cient implementations have been developed for both SIMD [40] and MIMD [41]

parallel architectures.

The computation of normal ow (either stereo normal ow or motion normal ow),

also belongs to the class of low level, data parallel algorithms. Normal ow computation
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can be decomposed into three independent stages which correspond to the computation

of the two spatial and the one temporal derivative of the image intensity function.

Each of these stages involves some local mask correlation, which has the same general

computational characteristics as image smoothing. In particular, the image gradient is

computed by convolving the image with the Sobel operators [42]. The time derivative

is computed by substructing averaged (in 3�3 windows) intensities from the successive

frames. The spatial and temporal derivatives are combined through eq (4) to give the

normal ow values (for both stereo and motion normal ow).

LMedS estimation, is the most computationally intensive part of the independent

motion detection scheme. LMedS minimization cannot be reduced to a closed form

solution, but must be solved by a search in the space of possible estimates generated

by the data. Let p denote the number of parameters to be estimated; then there are

O(np) possible p-tuples. Because this search space may become prohibitively large, in

practical situations, a Monte-Carlo type of speedup technique is employed [36], in which

a certain probability of error is tolerated. If e is the fraction of outliers in the data, then

the probability Q that at least one out of m p-tuples has only uncorrupted observations

is equal to:

Q = 1� [1� (1� e)p]
m

(16)

Thus, the solution of eq (16) for m, gives a lower bound for the number of p-tuples that

should be tried. Note that eq (16) is independent of n. Each of the m trials, requires the

selection of candidate parameter values and the computation of the squared residuals

between the observations and the predictions of the model. It is noted that we are

interested in obtaining an estimate for m for p = 3 and p = 6. These cases correspond

to the stereo model of eq (7) (three parameter model) and the motion model of eq (6) (six

parameter model), respectively. Figures 5(a) and 5(b) show a 3D plot of the number of

required iterations m (for p = 3 and p = 6, respectively) as a function of the con�dence

level Q and the outlier ratio e. As can be observed, the number of iterations increases

with respect to the con�dence level Q and the outlier ratio e. In most practical cases,

the spatial extent of independently moving objects is small, compared to the static

background. This is equivalent to con�ning the outlier ratio in a range [0::a], with
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a < 0:5. Referring to Figs 5(a),(b) we observe that in this case the number of required

iterations is considerably reduced.

These �gures hold for the case that at each iteration, p observations are randomly

selected, a linear system is solved and the median of the squared residuals is tested

against the minimum of the squared residuals computed so far. Alternatively, candi-

date solutions can be formed by the results of least squares parameter estimation in

rectangles of random dimensions and locations over the input image. In this case, all

points with reliable normal ow values in the random rectangle contribute to the least

squares solution. Both approaches were tested. With the �rst approach (linear sys-

tem solution) a number of computationally cheap iterations are required. The second

approach (least squares solution) requires fewer, but computationally more expensive

iterations. Experimental results demonstrated that the overall computational perfor-

mance is better for the second approach because of the signi�cant reduction in the

number of iterations required. Experimentation has revealed that in this second case, a

selection of m = 20 for p = 3 and m = 150 for p = 6 works satisfactorily for real world

scenes.

Another algorithmic improvement is achieved through avoiding the use of sorting to

compute the median in each of the m iterations. Instead, we use an algorithm that

selects the kth largest number out of n numbers, originally suggested in [43]. This

algorithm has a time complexity of O(n), rather than the O(n log n) complexity of the

best serial sorting algorithm. Thus, the overall computational complexity of LMedS

becomes O(mn).

Furthermore, the performance of LMedS can be greatly improved by exploiting par-

allel processing techniques. Each of the m iterations does not depend on the outcome of

another iteration. All candidate solutions could be evaluated in parallel. An extra stage

for comparing the partial results is needed, which amounts to the problem of �nding

in parallel the minimum in a set of numbers. Going one step further, in each of the m

iterations, the computation of the residual for each observation does not depend on the

computation of the residual for another observation. Therefore, the n residuals can be

computed in parallel.
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The motion segmentation of the dominant depth layer is post-processed towards

enhancing its usability. The post processing is again a local operation for which e�cient

parallel algorithms may be developed.

One interesting computational characteristic of the overall method for independent

motion stems from the computational nature of LMedS. Through the various iterations

over possible parameter sets, LMedS keeps the best solution found thus far (the one

that minimizes the median of the residuals). Therefore, the whole algorithm can be

viewed as an any time algorithm (i.e. an algorithm that continuously improves a given

solution to the problem). This characteristic is very important because the execution

time of the algorithm can be appropriately adjusted, taking into account the resource

limitations of the system and the hard real time constraints that should be met.

Additional computational savings can be gained by considering a stereo con�guration

that does not change over time. In such a case, after few time instances, a robust

estimate of �s can be achieved. Given this estimate, the 3-parameter model of eq (7)

can be reduced to a simpler model for the phase of estimating the dominant depth layer,

which reduces the computational requirements for the stereo processing.

6 Experimental results

The proposed method for independent motion detection has been tested using both

synthetic data and real world image sequences. Sample results from these experiments

are reported in the following sections.

6.1 Simulation results

In order to facilitate the experimental evaluation of the proposed method, a simulation

environment has been built. This environment enables the creation of synthetic normal

ow �elds (both stereo and motion) for a certain scene. The simulator can be used

to de�ne the focal length of the hypothesized cameras, the parameters of the stereo

con�guration, the noise level of the resulting normal ow �elds and the number of

rigidly moving regions. For each rigidly moving region, one can de�ne its location and
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dimensions on the image (rectangular regions are assumed), the mean and the variance

of the Gaussian distribution that models the depth of the points in that region, the

density of the normal ow �eld in the region, and its 3D motion parameters. Given the

above parameters, a very large variety of scenarios can be e�ectively simulated. The

output of a simulation is one possible normal ow �eld that can be due to the scene

structure and the motion parameters. At each image point, the simulator assumes a

random gradient direction which is selected from a uniform distribution in the range

[0; ::; 2�).

A set of experiments has been carried out in order to evaluate the performance

of IMDRR, as a function of the noise in the motion and stereo normal ow �elds.

The proposed method has also been compared to a motion segmentation method that

employs a 2D motion model. This method has very close resemblances to the one

proposed by Ayer et al [6], and tries to estimate the parameters of a 2D a�ne model

by employing robust regression on a motion normal ow �eld.

In order to evaluate the performance of IMDRR, a synthetic motion and stereo nor-

mal ow �eld has been constructed by using the simulation environment. The synthetic

ow �elds refer to 256 � 256 images. A focal length of 600 pixels has been assumed for

both cameras of the simulated stereoscopic observer. The cameras have been arranged

in a parallel stereo con�guration, with a 7cm baseline. The normal ow values in 50%

of the points have been rejected, simulating the rejection of normal ows due to small

image gradient. The simulated scene contains three areas of interest. The layout of the

scene4 can be seen in Fig 6. The green and the blue regions correspond to areas of the

static environment, but di�er in their average depth. The green area is located at ap-

proximately 6m from the observer, while the blue area is at approximately 3m from the

observer. The red region corresponds to an independently moving object, which is at

the same depth with the green area (distant background). Thus, an independent motion

detection algorithm should produce a common label for the points of the green and blue

regions (egomotion) and another label for the points of the red region (independent mo-

4Note that the simulation does not create synthetic images, but synthetic normal ow �elds. Thus,

Fig 6 is given to illustrate the layout of the regions in the hypothesized scene and it is not relevant to

the image intensities.
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tion). The independently moving object covers 23% of the total area of the scene and the

close-to-the-observer object covers 25% of the scene. Note also that the independently

moving object covers the 30% of the scene points that are at the dominant depth. The

observer has been assumed to perform a complex translational and rotational motion

with parameters (Ue; Ve;We) = (60:0; 60:0; 6:0) and (�e; �e; e) = (0:001; 0:0; 0:0001),

while the relative motion between the observer and the independently moving object is

(Ui; Vi;Wi) = (4:0; 40:0; 80:0) and (�i; �i; i) = (0:002; 0:0002; 0:0001).

Various simulations were performed, each with di�erent noise added to both motion

and stereo normal ow �elds. In all cases, Gaussian noise with zero mean has been

hypothesized. The standard deviation �n was set relative to the average magnitude

MNF of the normal ow vectors in the whole scene. In di�erent runs, �n varied from

0:0 (noise-free case) to 0:48 �MNF (highly contaminated data). In each experiment,

both the motion and the stereo normal ow �elds were a�ected by the same type of

Gaussian noise.

Figures 7(a) to 7(i) illustrate the results of the 2D motion segmentation method for

the above noise distributions. Each of the images of Fig 7, is a map with dimensions

equal to the dimensions of the input images. Each point in this map corresponds to a

point in the image and takes one of three possible labels: Black, white and dark gray,

corresponding to egomotion, independent motion and points with rejected normal ows,

respectively. The results of Fig 7 are characteristic of the inherent weakness of the 2D

motion models when applied to scenes with large depth variations. More precisely, the

method recognizes the object that is close to the observer as independently moving,

regardless of the level of noise. Moreover, when the noise becomes high, the method

fails to capture the real independent motion. This is because the apparent motion of

the independently moving object is (in terms of the a�ne model) more similar to the

apparent motion of the distant background than it is to the static foreground object.

The results of the application of the IMDRR method to the same data set are shown

in Figs 8(a) through 8(i). As can be observed, the correct 3D motion characteristics

of the scene are captured by this method. The method recognizes the independent

motion of the distant object and fails only when the noise of the normal ow �elds

(for both stereo and motion) becomes extremely high (�n � 0:48 �MNF ). Note that
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the points of the foreground object have been correctly recognized as such after the

application of LMedS to the stereoscopic data. Therefore, they were rejected from

further consideration; this is indicated in Fig 8 by the gray color that shades these

points.

6.2 Experiments with real world sequences

IMDRR has been implemented on TALOS, the mobile robotic platform available at the

Computer Vision and Robotics Laboratory (CVRL) of FORTH. TALOS includes:

� A mobile robotic platform (equipped with a 486 and a PENTIUM processors

running Linux, Radio Link communications, sonar, infrared, and tactile sensors).

� A binocular, active vision head (independent control of pan, tilt, left and right

vergence).

Figure 9 shows a picture of TALOS. The system is con�gured so that the PENTIUM

processor is responsible for vision processing and control of the head, while the 486

processor controls the motion of the robot as well as the sonar, infrared and tactile

sensors.

Several experiments have been conducted to test the proposed independent motion

detection method. It should be stressed that during the course of all the experiments the

exact values for the intrinsic camera parameters, the stereo con�guration parameters

and the observer's egomotion were unknown. However, this does not a�ect the outcome

of the method, since LMedS di�erentiates between model inliers and outliers without

using any prior knowledge of the actual model parameter values.

As a testbed for evaluating the performance of IMDRR, the \cart" sequence (512

� 384 images) has been employed. One frame (the left from the stereo pair) of this

sequence is shown in Fig 10(a). In this image sequence, the observer performs a trans-

lational motion with U and W components as well as with a rotational � component5.

5It is noted that in this, as well as in all other experiments held, the indicated egomotion param-

eters are the dominant ones; since no calibration has been applied, egomotion may also have minor

translational and rotational components with respect to the axes that are not mentioned explicitly.
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The horizontal translation is the motion that dominates. The �eld of view consists of

a distant background and a close to the observer foreground. The background contains

two independently moving objects: A cart that translates in the opposite direction of

the observer (middle of the scene) and a small box (to the right of the scene) that

translates at the same direction with the observer, but with di�erent velocity. The

foreground of the scene contains a table on which there is a toy car. Both objects are

stationary relative to the static environment.

Figures 10(b),(c) illustrate the motion segmentation results of the 2D method for

the \cart" sequence. In Fig 10(b), the same coding of colors is employed as in previous

results; gray color corresponds to points where normal ow values have been rejected,

black color corresponds to the model inliers and white color corresponds to the model

outliers, i.e. points where independent motion has been detected. Figure 10(c) shows

the results of postprocessing of Fig 10(b), in which independently moving objects appear

as in the original image while the rest of the scene is masked-out. As can be veri�ed,

the method is able to detect the independent motion that is present in the distant

background. However, it also detects the toy car and the table as independently moving,

although they belong to the static foreground. This is because the 2D method does not

exploit any information regarding depth. It actually assumes that all points in the

scene are at an equal distance from the observer. Thus, the apparent motion of the

toy-car which is due to its relatively small distance from the observer, is interpreted as

independent motion.

Figure 11 shows the results of IMDRR when applied to this image sequence. The

estimation of the dominant depth resulted in the depth map of Fig 11(a). In this �gure,

gray color corresponds to points where stereo normal ow values have been rejected,

black color corresponds to depth inliers (dominant depth) and white color corresponds

to stereo outliers. Robust regression within the dominant depth layer gives rise to the

3D motion segmentation map that is illustrated in Fig 11(b). Finally, the postprocessed

results of Fig 11(b) are presented in Fig 11(c). This result demonstrates that IMDRR

is capable of detecting the independent motion that is present in the scene, without

misinterpreting the apparent motion due to depth variation as independent motion.

The results presented in Fig 11 have been obtained after o�-line processing of the
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acquired images. However, since IMDRR is intended for on-board use on the robotic

platform TALOS, a set of experiments has also been conducted to test the on-line

performance of the method. In all these experiments the on-board PENTIUM processor

has been used; due to the limited processing power and for reducing the overhead for

image acquisition, processing and dumping of the results on disk, the image size has

been kept small, namely 144�106. Moreover, the number m of iterations of LMedS for

motion segmentation (refer to section 5 and Fig 5(b)) has been kept relatively small,

namely m = 100. However, this did not a�ect the motion segmentation results since

the spatial extent of the motion was rather small.

A sample result from these experiments is presented in Figs 12 and 13 for demon-

stration purposes. Fig 12 shows twelve frames of a sequence that correspond to the

left frames of the stereo pairs. These frames are not consecutive in time but show in-

termediate snapshots of the whole sequence. As can be observed, in the scene in view

there is a man who is initially sitting on a chair (right of the scene). The man then

stands up, moves to the cart, takes it to the leftmost part of the room and then re-

turns to his initial position. Meanwhile, TALOS is moving with W and U components

(i.e. approaches the scene and also moves to the left). Figure 13 shows the motion

segmentation (after post processing) that has been achieved by IMDRR. This �gure

demonstrates clearly the correct segmentation that has been achieved. It is also worth

noting that the small table in the foreground (bottom-left of the scene) has not been

misinterpreted as moving, although it is placed at substantially di�erent depth from

the rest of the scene.

7 Conclusions

In this paper, the IMDRR method for independent 3D motion detection has been

described. Robust regression and, more speci�cally, LMedS constitutes an essential part

of the method. Independent motion detection is achieved by the combination of motion

information with stereoscopic information acquired by an uncalibrated stereo system.

Instead of using optical ow which amounts to solving the ill-posed correspondence

problem, the normal ow �eld is used in both the stereo and motion domains.
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The experimental results presented serve as an indication of the robustness of IM-

DRR, as well as of its capability to handle multiple and possibly non-rigid motions.

IMDRR can also be used as a preprocessing stage to other modules that are able to

accurately estimate the parameters of one rigid motion [26].

From a computational performance point of view, although LMedS estimation has

non-trivial computational requirements, IMDRR can be speeded-up by various ways

that were discussed in section 5. Moreover, by appropriately adjusting the image size

and the computational requirements of LMedS, an on-board implementation of IMDRR

has been demonstrated.

The motivation behind IMDRR is to provide robust 3D motion segmentation by

employing the minimum possible assumptions about the external world and the ob-

server. As a consequence, information representation remains close to the data, and

IMDRR may become a robust building block to other visual capabilities of an observer

navigating in a three dimensional dynamic environment. Under such a perspective, the

basic weakness of IMDRR is that, at least theoretically, 50% of the scene points should

constitute a frontoparallel plane. Current research [44] is targeted towards alternative

exploitations of stereo information in order to remove this constraining assumption.
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Figure 1: The camera coordinate system.
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Figure 2: A schematic view of the aperture problem. The solid line in the left image

has moved to a new position in the right image. Based on the information that is

visible through the aperture, it is not possible to decide which of the dashed vectors

corresponds to the motion vector of the line. However, whatever the motion vector may

be, its projection to the direction perpendicular to the line is unique and is represented

by the solid vector.
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(a) (b)

Figure 5: Number of iterations m for LMedS estimation (eq (16)), as a function of Q

and e. The number of model parameters is kept equal to (a) p = 3, and (b) p = 6.

Figure 6: The layout of the scene used for the evaluation of IMDRR under di�erent

levels of noise.

31



(a) �n = 0.00 (b) �n = 0.06 (c) �n = 0.12

(d) �n = 0.18 (e) �n = 0.24 (f) �n = 0.30

(g) �n = 0.36 (h) �n = 0.42 (i) �n = 0.48

Figure 7: Results of 2D independent motion detection for di�erent levels of noise.

(a) �n = 0.00 (b) �n = 0.06 (c) �n = 0.12

(d) �n = 0.18 (e) �n = 0.24 (f) �n = 0.30

(g) �n = 0.36 (h) �n = 0.42 (i) �n = 0.48

Figure 8: Results of IMDRR for di�erent levels of noise.

32



Figure 9: TALOS, the multisensor mobile robot of ICS FORTH.

(a) (b) (c)

Figure 10: (a) One frame of the \cart" sequence, (b),(c) 2D motion segmentation results;

(b) before and, (c) after postprocessing.

(a) (b) (c)

Figure 11: IMDRR results for the \cart" sequence; (a) Dominant depth estimation,

(b) the outliers of motion segmentation within the dominant (distant) depth and, (c)

motion segmentation after postprocessing.

33



Figure 12: Twelve images from the \moving man" sequence

Figure 13: Results of IMDRR for the \moving man" sequence

34


