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Abstract

This paper considers a specific problem of visual percep-
tion of motion, namely the problem of visual detection of
independent 3D motion. Most of the existing techniques for
solving this problem rely on restrictive assumptions about
the environment, the observer’s motion, or both. Moreover,
they are based on the computation of optical flow, which
amounts to solving the ill-posed correspondence problem.
In this work, independent motion detection is formulated as
robust parameter estimation applied to the visual input ac-
quired by a binocular, rigidly moving observer. Depth and
motion measurements are combined in a linear model. The
parameters of this model are related to the parameters of
self-motion (egomotion) and the parameters of the stereo-
scopic configuration of the observer. The robust estimation
of this model leads to a segmentation of the scene based on
3D motion. The method avoids the correspondence problem
by employing only normal flow fields. Experimental results
demonstrate the effectiveness of this method in detecting
independent motion in scenes with large depth variations,
without any constraints imposed on observer motion.

1. Introduction

The visual perception of motion has been the subject of
many research efforts due to its fundamental importance for
many visually assisted tasks. Independent 3D motion detec-
tion (IMD) is an important motion perception capability of
a seeing system. In a world where changes of state are often
more important than the states themselves, the perception
of independent motion provides a rich input to attention,
informing a seeing system about dynamic changes in the
environment.

In the case of a static observer, the problem of indepen-
dent motion detection can be treated as a problem of change

detection [8]. The situation is much more complicated when
the observer moves relative to the environment. In this case,
even the static parts of the scene appear to be moving in a
way that depends on the motion of the observer and on the
structure of the viewed scene. The case of a moving ob-
server, is also of great interest because biological and some
man-made visual systems are usually in constant motion.

In the case of a moving observer, IMD has been often
approached as a problem of segmenting the 2D motion that
is computed from a temporal sequence of images. Wang
and Adelson [16] estimate affine models for optical flow in
image patches. Patches are then combined in larger mo-
tion segments based on a k-means clustering scheme that
merges two patches if the distance of their motion parame-
ters is sufficiently small. Nordlund and Uhlin [11] estimate
the parameters of an affine model of 2D motion, assuming
that the estimation of the model parameters will not be af-
fected considerably by the presence of small independently
moving objects. IMD is then achieved by determining the
points where the residual between the measured and the
predicted flow is large. The basic problem of the methods
that employ 2D models is that they assume scenes where
depth variations are small compared to the distance from the
observer. However, in real scenes depth variations may be
large and, therefore, the discontinuities that are detected by
the 2D methods are not only due to motion, but also due the
structure of the scene.

Solutions to the problem of IMD have also been provided
using 3D models. Employing 3D models makes the prob-
lem more difficult because extra variables are introduced
regarding the depths of scene points. This in turn requires
certain assumptions to be made made in order to provide
additional constraints for the problem. Most of the methods
depend on the accurate computation of a dense optical flow
field or on the computation of a sparse map of feature cor-
respondences. Wang and Duncan [17] present an iterative
method for recovering the 3D motion and structure of in-



dependently moving objects from a sparse set of velocities
obtained from a pair of calibrated, parallel cameras. Other
assumptions that are commonly made by existing methods
are related to the motion of the observer, to the structure of
the scene in view, or both. Sharma and Aloimonos [13] and
Clarke and Zisserman [4] have considered the IMD prob-
lem for an observer pursuing restricted translational motion.
Adiv [1] performs segmentation by assuming planar surfaces
undergoing rigid motion, thus introducing an environmental
assumption. Thompson and Pong [14] derive various princi-
ples for detecting independent motion when certain aspects
of the egomotion or of the scene structure are known. How-
ever, the practical exploitation of the underlying principles
is limited because of the assumptions they are based on and
other open implementation issues. Argyros et al [2] present
a method that uses stereoscopic information to segment an
image into depth layers, in an effort to decompose the 3D
problem into a set of 2D ones. The method provides reliable
results at each depth layer, but there are certain limitations
regarding the integration of results from the various depth
layers. In Argyros et al [3], qualitative functions of depth
estimated from stereo and motion are extracted in image
patches. Comparison of these functions leads to conclu-
sions regarding the number of 3D motions in a patch. The
method is reliable and computationally efficient, but the re-
sulting map of independently moving objects is coarse.

In order to overcome the limitations of existing methods,
this paper proposes a new method for IMD. The method
relies on the computation of normal flow, the component
of motion in the direction of the image gradient, which is
less informative compared to optical flow but can be more
accurately computed from a temporal sequence of images.
Based on the choice of normal flow to represent visual mo-
tion, the method exploits stereoscopic information in order
to eliminate the depth variable from 3D motion equations.
However, knowledge on the parameters of the stereo con-
figuration (i.e. extrinsic calibration) is not required. The
method assumes an observer that moves rigidly with unre-
stricted translational and rotational egomotion. Independent
motion can be rigid or non-rigid.

The rest of this paper is organized as follows. Section
2 presents the input used by the proposed method and is-
sues related to robust regression, which constitutes a basic
building block of the proposed method. Section 3 presents
the method itself. Section 4 presents experimental results
from applying the method to real-world image sequences.
Finally, section 5 concludes the paper with an overview of
its main contributions.

2. Preliminaries

Before proceeding with the description of the proposed
method, issues related to motion representation are dis-

cussed. In addition, a brief discussion on robust regression
methods is provided, since they constitute a building block
of the proposed IMD method.

2.1. Visual motion representation

Consider a coordinate system OXY Z at the optical cen-
ter (nodal point) of a pinhole camera, such that the axis OZ
coincides with the optical axis. Suppose that the camera
is moving rigidly with respect to its 3D static environment
with translational motion (U; V;W ) and rotational motion
(�; �; ), as shown in Fig. 1. Under perspective projection,
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Figure 1. The camera coordinate system.

the equations relating the 2D velocity (u; v) of an image
point p(x; y) to the 3D velocity of the projected 3D point
P (X;Y; Z) are [9]:
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Equations (1) describe a 2D motion vector field, which re-
lates the 3D motion of points to their 2D projected motion
on the image plane. The motion field is a purely geometrical
concept and it is not necessarily identical to the optical flow
field [6], which describes the motion of brightness patterns
observed because of the relative motion between the imag-
ing system and the viewed scene. Even in the cases that
these two fields are identical, the computation of the optical
flow field requires special conditions (such as smoothness)
to be satisfied for a unique solution to exist. This is because
the computation of optical flow requires the recovery of two
unknowns (u, v) at a certain point, while, at each point,
only one constraint can be derived without any smooth-
ness assumptions. This constraint is the well known optical
flow constraint equation, originally developed by Horn and
Schunk [7]:

Ixu+ Iyv + It = 0 (2)



In eq. (2) Ix, Iy and It are the two spatial and the temporal
derivatives of the image intensity function. This equation
gives only one local constraint on the flow values. In order to
get a second constraint, the methods that aim at recovering
optical flow typically assume a smooth flow field. How-
ever, this assumption does not always hold because of depth
discontinuities, independent 3D motion etc.

For the above reason, the proposed IMD method does
not rely on the computation of optical flow, but rather on
the normal flow field, the projection of the optical flow field
in the direction of image gradients. The normal flow field
is not necessarily identical to the normal motion field (the
projection of the motion field along the image gradient), in
the same way that the optical flow is not necessarily iden-
tical to the motion field [15]. It has been shown, however,
that normal flows are reliable in points where the image gra-
dient has a large magnitude. Normal flow vectors at such
points can be used as a robust input to 3D motion perception
algorithms.

2.2. Robust regression

The aim of robust regression methods [12] is to estimate
the parameters of a linear model based on data sets contain-
ing outliers, i.e. observations that deviate considerably from
the model describing the rest of the observations. The main
characteristic of robust estimators is their high breakdown
point, which may be defined as the smallest amount of out-
lier contamination that may force the value of the estimate
outside an arbitrary range.

A variety of robust estimators have been used in com-
puter vision. The RANSCAC method [5] is probably the
most popular one, but its reported breakdown point is small
compared to other robust estimators. Meer et al [10] provide
an interesting review of the use of robust regression methods
in computer vision.

The LMedS method, proposed by Rousseeuw [12], is a
robust estimator with a breakdown point of 50%. Qualita-
tively, LMedS tries to find a set of model parameters such
that the model best fits the majority of the observations.
Once LMedS has been applied to a set of observations, a
standard deviation estimate can be derived, which enables
the identification of model outliers. The high breakdown
point of LMedS makes it suitable for the purposes of this
work.

3. Proposed method

Consider a stereoscopic observer that is moving with
unrestricted motion in 3D space. Due to this motion, a
reliable normal flow vector can be computed at each point
where the image intensity gradient is large. Let (nx; ny) be

the unit vector in the gradient direction. The magnitude uM

of the normal flow vector is given by:

uM = unx + vny (3)

which, by substitution from eq. (1), yields:
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Equation (4) highlights some of the difficulties of the IMD
problem when employing normal flow. Each image point
(in fact, each point at which the intensity gradient has a
significant magnitude and, therefore, a reliable normal flow
vector can be computed) provides one constraint on the 3D
motion parameters. For each 3D motion k present in the
scene (either egomotion or independent motion), one set
of unknown motion parameters (Uk; Vk;Wk), (�k; �k; k)
is introduced. Furthermore, if no assumption is made re-
garding the depth Z, each point introduces one independent
depth variable. Thus, n computed normal flow vectors and
m 3D motions result in n available constraints with n+ 6m
unknowns. Evidently, the problem cannot be solved without
any additional information on depth.

Consider now the geometry of a typical stereo configura-
tion of a fixating pair of cameras. A pair of images captured
with such a configuration contains information relevant to
depth, that manifests itself in the form of disparities defined
by the displacements of points between images. Since the
stereoscopic pair of images can be acquired simultaneously,
there is no dynamic change in the world that can be recorded
by them. It can easily be observed that a stereo image pair
is identical to the sequence that would result from a hypo-
thetical (ego)motion that brings one camera to the position
of the other1. This observation enables the analysis of a
stereo pair based on motion analysis techniques. The hypo-
thetical motion that transforms the position of one camera
to the other is simpler than the one described by the gen-
eral motion model of eq. (1). Fig. 2 shows the motion that
maps the position of the left camera that of the right camera.
Evidently, there is no rotation around theX andZ axes, and
no translation along the Y axis. Thus, the translational and
rotational component of the imaginary motion can be writ-
ten as (Us; 0;Ws) and (0; �s; 0), respectively. Furthermore,
in most practical situations, the translation Ws along the Z
axis is negligible compared to the rest of the terms. Ws is
usually two orders of magnitude smaller thanUs. In fact, for

1Regardless of how a pair of images is captured, i.e. by a binocular sys-
tem configuration or by a moving camera, these images can be considered
as views of the same scene from different viewpoints.
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Figure 2. The parameters of the motion that
transforms the position of the left camera to
the position of the right camera (top view of
the stereo configuration).

special stereo configurations (e.g. a right angled one) it can
be shown that Ws is exactly equal to zero. Consequently, at
each image point, a normal flow value uS due to stereo may
be computed as:

uS = �nxf
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In practical situations, the computation of normal flow
from a stereoscopic pair of images needs further considera-
tion. The computation of normal flow is based on the optical
flow constraint equation, which does not hold if the two im-
ages differ too much. Moreover, normal flow is computed
from discrete images through spatial and temporal differen-
tiation with small masks. Issues related to the computation
of normal flow due to stereo are considered in Argyros et al
[2].

By solving eq. (5) for Z, we obtain:
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The computation of normal flow involves the computation
of the partial image derivatives Ix and Iy, which define the
normalized vector (nx; ny) in the gradient direction. If,
for the computation of both stereo and motion normal flow
fields, these derivatives are computed in the same reference
frame, then nx and ny are the same for both eqs. (4) and (6).
Therefore, the substitution of eq. (6) into eq. (4) results in
the following equation:
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Equation (7) is linear in the variables �1 = U
Us

, �2 =
U�s
Us

� �, �3 = V
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, �4 = V �s
Us

, �5 = W
Us

, �6 = W�s
Us

,
�7 = �, and �8 = . These variables are expressions
involving the 3D motion parameters and the stereo config-
uration parameters. LMedS estimation can be applied to a
set of observations of the model of eq. (7) as a means to
estimate the parameters �i, 1 � i � 8. LMedS will provide
estimates �̂i of the parameters �i and a segmentation of the
image points into model inliers and model outliers. Model
inliers, which are compatible with the estimated parameters
�̂i, correspond to image points that move with a dominant
set of 3D motion parameters. A point may belong to the set
of outliers if at least one of the following holds:

1. The quantities uS and=or uM for this point have been
computed erroneously.

2. The 3D motion parameters for this point are different
compared to the 3D motion parameters describing the
majority of points.

The points of the first class will, in principle, be few and
sparsely distributed over the image plane. This is because
only reliable normal flow values are considered. The second
class of points is essentially the class of points that are not
compatible with the dominant 3D motion parameters. Thus,
in the case of two rigid motions in a scene, the inlier=outlier
characterization of points achieved by LMedS is equivalent
to a dominant=secondary 3D motion segmentation of the
scene. In the case that more than two rigid motions are
present in a scene, the correctness of 3D motion segmen-
tation depends on the spatial extent of the 3D motions. If
there is one dominant 3D motion (in the sense that at least
50% of the total number of points move with this motion),
LMedS will be able to handle the situation successfully.
This is because of the high breakdown point of LMedS,
which tolerates an outlier percentage of up to 50% of the
total number of points. The inliers will correspond to the
dominant motion (egomotion) and the set of outliers will
contain all secondary (independent) motions. A recursive
application of LMedS to the set of outliers may further dis-
criminate the rest of the motions. The recursive application
of LMedS should be terminated when the remaining points
become fewer than a certain threshold. There are two rea-
sons for this. First, if the number of points becomes too
small, then the number of constraints provided by eq. (7)
becomes small and the discrimination between inliers and
outliers is subject to errors. Second, at each recursive appli-
cation of LMedS, the set of outliers does not contain only



points that correspond to a motion different than the domi-
nant one, but also points where normal flows have not been
computed accurately.

3.1. Postprocessing

According to the proposed method for independent mo-
tion detection, points are characterized as being indepen-
dently moving or not based on their conformance to a general
rigid 3D model of egomotion. The characterization is made
at the point level, without requiring any environmental as-
sumptions, such as smoothness, to hold in the neighborhood
of each point. In order to further exploit information regard-
ing independent motion, it is often considered preferable to
refer to connected, independently moving areas rather than
to isolated points. There are three main reasons why the
points of a motion segment do not form connected regions.
First, the normal flow field is usually a sparse field, because
normal flow values are considered unreliable in certain cases
(e.g. in points with a small gradient value). Second, there is
always the possibility of errors in measurements of normal
flow and, therefore, some points may become model inliers
(or outliers) because of these errors and not due to their 3D
motion parameters. Finally, normal flow is a projection of
the optical flow onto a certain direction. Infinitely many
other optical flow vectors have the same projection on this
direction. Consequently, a normal flow vector may be com-
patible with the parameters of two different 3D motions, and
therefore a number of point misclassifications may arise.

We overcome the problem of disconnected motion seg-
ments by exploiting the fact that, in the above cases, misclas-
sified points are sparsely distributed over the image plane.
A simple majority voting scheme is used. At a first step, the
number of inliers and outliers is computed in the neighbor-
hood of each image point. The label of this point becomes
the label of the majority in its neighborhood. This allows
isolated points to be removed. In the resulting map, the label
of the outliers is replicated in a small neighborhood in order
to group points of the same category into connected regions.

3.2. Egomotion estimation

Besides the inlier=outlier characterization, LMedS pro-
vides estimations �̂i for the parameters�i of the linear model
of eq. (7). Each of the model parameters �i corresponds to
expressions involving the 3D motion parameters (U; V;W )
and (�; �; ) of the observer and the stereo configuration
parameters (Us; �s). Thus, the observer is able to relate
his own motion parameters to the parameters of his stereo
configuration, i.e. to parameters of his own body2. More-
over, the estimated parameters �̂i can also be used to provide

2For example, �̂1 relates the horizontal component of the instantaneous
translational 3D motion to the baseline length.

quantitative knowledge regarding the 3D motion parameters
of the observer. More specifically, the following relations
hold:
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where, x0 and y0 are the coordinates of the FOE (i.e. the
point where the direction of translation intersects the in-
finitely large image plane). Similarly, an estimation of the
vergence angle of the stereo configuration is possible:

�s =
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�3

4. Experimental results

The experimental evaluation of the proposed method has
been based on real-world image sequences that have been ac-
quired by TALOS, the mobile robotic platform of the Com-
puter Vision and Robotics Laboratory (CVRL) of FORTH.
Several experiments have been conducted to test the pro-
posed method. It should be stressed that during the course
of all the experiments the exact values for the intrinsic cam-
era parameters and the stereo configuration parameters were
unknown.

A sample result refers to the “cart” image sequence. One
frame of the “cart” sequence (right image of the stereo pair
at time t) is shown in Fig. 3. In this sequence, a binocular

Figure 3. One frame of the “cart” sequence.

observer with parallel cameras performs a translational mo-
tion with U and W components as well as with a rotational
� component. The horizontal translation is the motion that
dominates. The scene contains a distant background and a
foreground close to the observer. The background contains
two independently moving objects: A cart that translates in
the opposite direction of the observer (middle of the scene)
and a small box (to the right of the scene) that translates in the
same direction with the observer, but with different velocity.
The foreground of the scene contains a table on which there
is a toy car. Both objects are stationary. Figure 4 illustrates
the results of 3D motion segmentation of the “cart” sequence
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Figure 4. 3D motion segmentation for the
“cart” sequence (a) before and, (b) after post-
processing.

by using the proposed method. Figure 4(a) shows the in-
termediate segmentation results (after LMedS estimation).
Black color corresponds to egomotion and white color cor-
responds to independent motion. Gray color corresponds to
points where no decision can be made, due to low values of
image gradients and, therefore, lack of normal flow vectors.
It can be observed that the largest concentration of white
(i.e. independently moving) points is on the regions of the
independently moving objects. The points that are not iden-
tified as independently moving, although they belong to an
independent motion, are mainly those belonging to horizon-
tal edges. This is because the model of eq. (7) does not hold
for nx = 0, which is the case of vertical gradients or, equiv-
alently, horizontal edges ((nx; ny) = (0; 1)). Figure 4(b)
presents the results of Fig. 4(a) after postprocessing, which
eliminates isolated outliers (inliers) in large populations of
inliers (outliers) and, in the resulting map, dilates the label
of remaining outliers in a small neighborhood. In Fig. 4(b),
areas that are detected as independently moving appear with
the intensities that they have in the original image, while all
other areas are masked out. It can be seen that after this type
of postprocessing the bodies of the cart and the box have
been successfully identified as independently moving.

5. Conclusions

Artificial seeing systems should be able to operate in en-
vironments that contain both stationary and moving objects.
The perception of independent 3D motion is crucial because
it provides useful information on where attention should be
focused and, probably, maintained. In this paper, IMD was
based on motion and structure information that an observer
acquires while moving in 3D space. The proposed method
employs 3D motion models and is able to perform satis-
factorily even in scenes with considerable depth variations.
The method relies on normal flow fields, thus avoiding the
ill-posed correspondence problem. Unrestricted rigid ego-
motion was assumed for the observer. Ongoing research

aims at exploiting the proposed method in the general con-
text of a robot navigating in 3D space, where the cooperation
among various visually-guided behaviors and issues such as
real-time performance are of central importance.
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