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Abstract

This paper presents a novel method for the detection of objects that
move independently of the observer in a 3D dynamic environment. In-
dependent 3D motion detection is formulated as a problem of robust
regression applied to visual input acquired by a binocular, rigidly mov-
ing observer. The qualitative analysis of images acquired by a parallel
stereo con�guration yields a segmentation of a scene into depth lay-
ers. A depth layer consists of points of the 3D space for which depth
variations are small compared to the distance from the observer. Ro-
bust regression is applied to each depth layer in order to segment the
latter into coherently moving regions. Finally, a combination stage is
applied across all layers in order to come up with an integrated view
of independent motion in the whole 3D scene. In contrast to other
existing approaches for independent motion detection which are based
on the ill-posed problem of optical ow computation, the proposed
method relies on normal ow �elds for both stereo and motion pro-
cessing. Experimental results show the e�ectiveness and robustness of
the proposed scheme, which is capable of discriminating independent
3D motion in scenes with large depth variations.

1 Introduction

The visual �eld of a moving observer who is equipped with visual sensors, appears
to be moving in a speci�c manner, depending on the observer's egomotion and the
structure of the viewed scene. The problem of independent 3D motion detection
can be de�ned as the problem of locating objects that move independently of the
observer in his �eld of view. The ability to detect independent 3D motion is very
important for an observer interacting with a dynamic environment. It is known
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[1] that independent motion detection is one of the basic visual competences of
most of the biological organisms possessing the sense of vision.

Most of the research e�orts towards independent motion detection depend on
the accurate computation of the optical ow �eld. Jain [2] has considered the
problem of independent 3D motion detection by an observer pursuing transla-
tional motion. In addition to imposing constraints on egomotion, knowledge of
the direction of translation is required. Thompson [3] derives various principles
for detecting independent motion when certain aspects of the egomotion or of the
scene structure are known. However, the practical exploitation of these principles
is made di�cult by the limiting assumptions they are based on. Bouthemy [4]
views motion segmentation as a problem of statistical regularization using Markov
Random Field models. The method proposed by Sharma [5] uses the spatiotem-
poral derivatives of the image intensity function (the so called normal ow �eld),
rather than optical ow. However, as in the case of [2], known translational ego-
motion is hypothesized. Nelson [6] presents two methods for independent motion
detection which are also based on the normal ow �eld. The �rst of these methods
requires a priori knowledge of egomotion parameters and assumes upper bounds on
the depth of the scene. The second method detects abrupt changes of independent
motion rather than independent motion itself.

The method proposed in this paper makes use of the Least Median of Squares
(LMedS) estimation technique [7]. Initially, images that are acquired by a binocu-
lar observer are processed in order to separate the image points into depth layers;
each depth layer corresponds to a set of points whose di�erence in depth is small
with respect to their distance from the observer. At a second stage, LMedS is
applied to the motion data acquired by the observer at successive time instances.
The application of LMedS results in the segmentation of each depth layer into mo-
tion inliers and motion outliers. Motion inliers correspond to points moving with a
dominant set of 3D motion parameters. Motion outliers correspond to points that
do not conform with the dominant motion parameters. Finally, a combination
stage is responsible for integrating the information collected through the various
layers, yielding the 3D motion segmentation of the scene. Robust regression has
also been employed in the past in the problem of motion segmentation [8]. How-
ever, since no information on scene structure is used, the method presented in [8]
is only applicable in cases of scenes forming a frontoparallel plane.

In contrast to other approaches for motion segmentation that use optical ow
[2, 3], the proposed method is based on normal ow. The ill-posed correspondence
problem is not only avoided for the case of motion, but also for the case of stereo
which is treated as the hypothetical motion that would map the position of the
left camera to the position of the right camera. Again, normal ow is computed
between the two frames of the stereo pair.

The rest of the paper is organized as follows. Section 2 describes the input used
by the independent motion detection method. It also gives a brief introduction
to robust regression and the LMedS estimation technique, which constitutes a
basic building block of the approach. The independent motion detection method
is fully described in section 3. In section 4, experimental results are presented and
discussed. Finally, section 5 summarizes the contributions of this work.
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2 Preliminaries

Issues related to motion representation are briey reviewed here. The rationale
behind the choice to employ the normal ow �eld in all computations is given.
Additionally, a discussion on robust regression and, more speci�cally, on LMedS is
provided, since the later comprises a basic building block of the described scheme.

2.1 Visual motion representation

Consider a 3D coordinate system positioned to the optical center (nodal point) of a
camera. Suppose that the camera moves rigidly in its 3D static environment with
translational motion ~t = (U; V;W ) and rotational motion ~! = (�; �; ). Under
perspective projection, the equations relating the 2D velocity (u; v) of an image
point p(x; y) to the 3D velocity of the projected 3D point P (X;Y; Z) are [9]:
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where f represents the focal length of the imaging system.
Equations (1) describe the 2D motion �eld, which is the projection of the 3D

motion of a point on the image plane. The motion �eld is a purely geometrical
concept and is not necessarily identical to the optical ow �eld [10], which describes
the apparent motion of brightness patterns resulting from the relative motion
between an imaging system and its environment. Verri and Poggio [11] have shown
that the motion and optical ow �elds are identical in speci�c cases only. Even in
the cases that these two �elds are identical, the problem of optical ow estimation
is ill-posed [12]. The problem of optical ow computation is often approached
using regularization methods, which impose constraints on the solution. Such
constraints are related to certain assumptions about the structure of the viewed
scene. In practice - especially in the case of independent motion where motion
discontinuities exist by de�nition - these assumptions are quite often violated,
resulting in errors in optical ow estimation.

For the above reasons, the proposed method does not rely on optical ow,
rather on normal ow, i.e. the projection of optical ow on the direction of the
intensity gradient. In order to compute the normal ow �eld, a sequence of im-
ages is modeled as a continuous irradiance function I(x; y; t) of two spatial (x; y)
and one temporal (t) variables. Assuming that irradiance is conserved between
two consecutive frames, the well known optical ow constraint equation, originally
developed by Horn and Schunk [10], can be derived:

(Ix; Iy) � (u; v) = �It (2)

where, Ix, Iy and It are the spatial and temporal partial derivatives of the im-
age intensity function, respectively, and \�" denotes dot product. Equation (2),
facilitates the computation of the normal ow �eld. The latter is not necessarily
identical to the normal motion �eld (the projection of the motion �eld along the
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gradient direction), in the same way that the optical ow is not necessarily iden-
tical to the motion �eld. However, normal ow is a good approximation to the
normal motion �eld at points where the image gradient magnitude is large [11].
Normal ow vectors at such points can be used as a robust input to 3D motion
analysis.

2.1.1 Normal ow �eld due to motion

Let (nx; ny) be the unit vector in the gradient direction. The magnitude unm of
the normal ow vector is given as unm = unx + vny which, from eq. (1), yields:

unm = (�nxf)
U

Z
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Equation (3) highlights some of the di�culties of the problem of independent mo-
tion detection. Each image point (in fact, each point for which a reliable normal
ow vector can be computed) provides one constraint on the 3D motion param-
eters. In the case that only the observer is moving, the above equation holds
with the same set of 3D egomotion parameters (UE ; VE ;WE), (�E ; �E ; E) at all
points. In the case, however, of independent motion, there is at least one more
set of motion parameters (UI ; VI ;WI), (�I ; �I ; I) which is valid for some of the
image points. Furthermore, if no assumptions regarding the depth Z are made,
each point introduces an extra independent depth variable. Evidently, the problem
cannot be solved if no additional information regarding depth is available.

2.1.2 Normal ow �eld due to stereo

Consider a stereo con�guration, where the optical axes of the two cameras are
parallel. A pair of images captured with such a con�guration encapsulates infor-
mation relevant to depth, that manifests itself in the form of disparities de�ned
by the displacements of points between images. Since these images are acquired
simultaneously, there is no dynamic change in the world that can be recorded
by them. It can easily be observed that a stereo image pair is identical to the
sequence that would result from a hypothetical (ego)motion that brings the one
camera to the position of the other. This remark enables the analysis of a stereo
pair employing motion analysis techniques. Speci�cally, a translational motion Us,
directly related to the length of the baseline of the stereo con�guration, su�ces to
describe the hypothetical motion. According to eq. (3), a normal ow value uns
due to stereo can be computed at each point, which is equal to

uns = (�nxf)
Us

Z
(4)

In practical situations, the computation of normal ow from a pair of stereo images
needs further consideration. The computation of normal ow is based on the opti-
cal ow constraint equation, which assumes that the motion between consecutive
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images is in the order of a few pixels. From eq. (4) it can be seen that the mag-
nitude of the stereo normal ow at a point depends on the stereo baseline length
(directly related to Us) and the scene structure (Z), but not on the coordinates
of the point on the image plane. If a lower bound for the scene structure and
an upper bound for the baseline length can be established, it is ensured that the
stereo-equivalent motion (and, therefore, stereo normal ow) can be bounded1.
Additionally, the magnitude of the optical ow (and consequently of the normal
ow) is also a function of the spatial image resolution. Therefore, a proper se-
lection of image resolution can be made, so that the magnitude of normal ow
vectors is within valid limits, at the cost of computing coarser depth information.

2.2 Robust regression

Regression analysis (�tting a model to noisy data) is a very important statistical
tool. In the general case of a linear model [7], the problem is to estimate the
model parameters based on observations of the model that may be contaminated
with noise. Traditionally, model parameters are estimated by the popular least
squares (LS) method. However, the LS estimator becomes highly unreliable in
the presence of outliers, that is observations that deviate considerably from the
model describing the rest of the observations. Robust regression methods [7] have
been proposed in order to cope with such cases. The main characteristic of robust
estimators is their high breakdown point, which may be de�ned as the smallest
amount of outlier contamination that may force the value of the estimate outside
an arbitrary range.

The LMedS method, proposed by Rousseeuw [7], comprises one such robust
estimation method. Qualitatively, LMedS tries to �nd a set of model parameters
such that the model best �ts the majority of the observations. Once LMedS
has been applied to a set of observations, a standard deviation estimate may be
derived. Based on this estimate, the observations are classi�ed into model inliers
and model outliers. LMedS has a very high breakdown point of 50%, which makes
it suitable for the purposes of this work.

3 Independent motion detection

Consider eq. (3) for all normal ows that have been computed from a pair of
successive images in time. This relation forms a linear model, in cases where the
depth Z and the 3D motion parameters are constant for all points. In terms of
LMedS estimation, the outliers of the linear model will be either points for which
Z deviates from a dominant depth, or points whose 3D motion is di�erent from
the dominant motion, or points where noise was introduced in the computation
of normal ow. For the purpose of independent motion detection, we are inter-
ested in the second class of points. If we are able to de�ne subsets of observations
that correspond to points with (approximately) the same depth and restrict the
application of LMedS to each of these subsets, then outliers should be due to
independent motion only. The third class of points may easily be discriminated,

1
nx does not violate this assumption since it is a normalized value in the range [0; 1].
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because it is expected that such points are very few and uniformly distributed over
the image plane. It is now possible to delineate the following algorithmic scheme
for independent motion detection, for the case of unrestricted 3D egomotion: (a)
segment the image points into depth layers, (b) for each depth layer, apply LMedS
estimation to identify motion outliers, and (c) combine results across all depth lay-
ers to get a global 3D motion segmentation. In the following, we provide solutions
for the steps of the above, general algorithmic framework.

3.1 Layering of a scene with respect to depth

Let S be the set of all points pi, 1 � i � n, of the image plane for which reliable
normal ow values can be computed. Each point pi 2 S corresponds to a point Pi
of the 3D world, with a depth Zi from the observer. Each point pi may de�ne a
depth layer Li, i.e. a subset of S, based on the following relation:

Li =

�
pj :

����Zi � Zj

Zi

���� < �

�
(5)

The above relation de�nes a set of points having depths that di�er from Zi by a
small percentage. Each of the layers Li can be interpreted as a \slice" of the 3D
space, that contains 3D points within a range of depths from the observer. The
farthest from the observer, the thicker the depth layers become, for the same �. If
� is selected to be su�ciently small, then the depth variables within a layer Li can
be considered as constant, equal to some value Ci which depends on layer Li.

Depth layering can be achieved by appropriate processing of the normal ow
values that are computed from a parallel stereo con�guration2. More speci�cally,
eq. (4) can be written as g(Z) = A

Z
, where g(Z) = �uns

nx
is a computable quantity,

and A = Usf is an unknown constant, dependent on the stereo con�guration only.
Suppose that we want to check if a point pj belongs to the layer of a point pi.
According to eq. (5), it is required that:

����Zi � Zj

Zi

���� < �,

�����
A

g(Zi)
� A

g(Zj )

A
g(Zi)

����� < �,

����1� g(Zi)

g(Zj)

���� < � (6)

Since g(Zi) and g(Zj) are computable quantities, we can decide whether two points
pi and pj belong to the same layer or not. Criterion (6) does not depend on the
stereo con�guration parameter A. Therefore, knowledge of the exact length of the
stereo baseline or of the focal length is not required. In practice, depth layering
is performed with an iterative scheme. First, a histogram of the function g(Z) is
computed. The highest peak of the histogram is determined and the value of the
function at this peak becomes the center for the de�nition of a depth layer. All
points which, according to criterion (6), belong to this layer are excluded from
subsequent consideration. These steps are repeated until all points of the image
are assigned to depth layers. The presented method for depth layering can be
characterized as direct in the sense that it surpasses the problem of solving for
the stereo con�guration parameters and tries to extract information about depth
based on a speci�c function of normal ow.

2Non parallel (i.e. �xating) stereo con�gurations can also be used for depth layering, but are
not reported here due to space limitations.
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3.2 Motion segmentation of a depth layer

Having segmented a scene into depth layers, the goal is now to segment each of
these layers based on its 3D motion characteristics. Due to the process of depth
layering, it is known that depth di�erences within a layer are very small compared
to the distance from the observer. Robust regression in the form of LMedS can
be used in order to estimate the dominant 3D motion parameters in this layer,
according to the model of eq. (3). LMedS is actually applied in order to estimate
the parameters ( U

Ci
; V
Ci
; W
Ci
) and (�; �; ), where Ci is the depth de�ning the speci�c

depth layer. The application of LMedS will partition the points in a depth layer
into model inliers and model outliers. Model inliers correspond to points with
a dominant 3D motion. Model outliers correspond to points where either the
normal ow values have been corrupted by noise or the underlying 3D motion
parameters are not equal to the ones of the dominant motion. Theoretically, up
to 50% of outliers can be tolerated. In the case of scenes with at most two rigid
motions, motion segmentation can be successfully achieved, since the one or the
other motion will dominate and will be estimated by the LMedS regression. In
case that there may be more than two rigid motions, the segmentation may be
recursively applied to the outliers of the previous robust estimation.

3.3 Integration of results from the various layers

The step of motion segmentation of a layer Li produces � motion segments Mi
1,

Mi
2, � � �, Mi

�, each of which is characterized by a set of parameters ( U
Ci
; V
Ci
; W
Ci
)

and (�; �; ). In order to come up with a 3D motion segmentation of the whole
scene, it should be examined whether two motion segments belonging to di�erent
depth layers correspond to the same 3D motion. Unfortunately, the estimated
parameters are not pure 3D motion parameters because the translational compo-
nents of the estimated vectors also include information about depth. Therefore,
any direct comparison of the estimated parameter vectors across di�erent depth
layers is invalid, unless additional, quantitative information about depth is avail-
able. Moreover, the combination of results cannot be achieved on the basis of the
inlier or outlier characterization of the scene points, because the dominant motion
in one layer may appear as a secondary motion in another layer.

The task of parameter comparison is tackled by reducing the dimensionality
of the problem. From each 6-tuple of estimated parameters ( U

Ci
; V
Ci
; W
Ci
; �; �; )

we derive a 5-tuple (m1;m2;m3;m4;m5) = ( U
W
; V
W
; �; �; ) by dividing the �rst

two coordinates of the 6-tuple by the third one. This 5-tuple depends only on
the 3D motion parameters. Therefore, it forms a basis for deciding whether to
merge motion segments residing in di�erent depth layers. The algorithm used
for the comparison of the motion segments compares each motion parameter in-
dependently. Consider the two motion 5-tuples (m1

a;m2
a;m3

a;m4
a;m5

a) and
(m1

b;m2
b;m3

b;m4
b;m5

b) of motion segments a and b, respectively. These are
considered identical i�:

8i; 1 � i � 5;

���� mi
a �mi

b

maxfmi
a;mi

bg

���� < �m (7)

where �m is a threshold that controls the sensitivity of motion discrimination.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 1: (a) One frame from a synthetic stereoscopic sequence, (b), (c), (d) depth
layers, (e), (f), (g) motion segmentation.

The dimensionality reduction employed, a�ects the discrimination of two motions
when both their FOEs3 and their rotational parameters are identical. However,
such cases are not common in practice and, moreover, cannot be tackled without
using metric depth information.

In practical situations, the motion 5-tuples compared are not the estimates
provided by LMedS, rather the least squares estimates of the model parameters
over the points in the inliers set. This is because in cases where a set of observations
has no outliers, least squares estimation gives more accurate estimates of the model
parameters. It should be stressed, however, that having already segmented a layer
with respect to its motion parameters, all algorithms that can solve the egomotion
estimation problem would su�ce to accurately estimate the motion parameters of a
speci�c segment and subsequently aid towards 3D motion parameter comparison.

4 Experimental results

The proposed method has been tested with synthetic and real data. The values of
the two thresholds �m and � (c.f. eqs (5),(7)) were experimentally set.

A �rst result refers to synthetically generated images. The RAYSHADE [13]
ray tracer has been employed to provide a sequence of stereoscopic images. Figure
1(a) shows one frame of the sequence. The composed scene contains 4 arti�cial
\buildings" on a checkered ground. All buildings have the same physical dimen-
sions. The leftmost and rightmost buildings are at the same depth from the ob-
server. The left-middle building is at a larger depth from the observer (compared
to the depths of the leftmost and rightmost buildings); the right-middle building is
at an even larger depth from the observer. The observer performs a translational
motion along the Z axis approaching the scene in view. At the same time, the two
buildings in the right half of the image are performing independent motions on
their own. The rightmost building performs an independent translational motion
along the Y axis and the right-middle building performs a composite translational
and rotational motion. Figures 1(b),(c),(d) show the results of depth layering. As

3The FOE is the point ( fU
W

;
fV
W

) on the image plane, which de�nes the direction of translation.
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(a) (b) (c)

Figure 2: (a) A real test image, (b) depth layers, (c) independent motion.

can be veri�ed from this �gure, the three di�erent depth layers have been success-
fully detected and outlined. The points corresponding to each layer have a black
color. The �rst layer corresponds to the two closer objects (leftmost and rightmost
buildings), the second to the object in intermediate depth (left-middle building)
and the third to the object furthest from the observer (right-middle building). Fig-
ures 1(e),(f),(g) show the results of 3D motion segmentation. Two independent
motions have been revealed (Figs 1(f),(g)). Egomotion is shown in Fig. 1(e). It
can be observed that successful discrimination of all di�erent 3D motions in the
scene has been accomplished, although they appear at di�erent depths. Moreover,
the 3D motion of the middle-left building has been successfully characterized as
being identical to that of the leftmost building.

The method has also been tested using real data. The results obtained in all
cases verify the robustness of the method. A sample result refers to the scene
of Fig 2(a), which consists of a distant background and a close to the observer
foreground. The background consists of a number of static objects as well as an
\equipment cart" (right-middle of the scene) and a box (right-top of the scene)
that are independently moving between two consecutive image frames. The cart
has two tool-racks, each carrying one box. The binocular observer also moves, with
unrestricted 3D motion. The image foreground consists of a table on which a toy-
car is placed. The depth layering is presented in Fig 2(b). Gray color corresponds
to points in the image where normal ow has been rejected as unreliable. For
the rest of the points, white color corresponds to the depth layer of the image
foreground and black color corresponds to the points of the distant background.
The result of 3D independent motion detection is presented in Fig 2(c). In this
�gure, gray color again corresponds to points where normal ow values have been
rejected as unreliable. However, black color now corresponds to the points moving
relative to the observer due to his egomotion, while white color corresponds to
independently moving points. From Figs 2(b) and 2(c) it can be observed that the
method provides correct discrimination of the two depth layers, as well as of the
independent motion of the cart (both upper and lower tool-racks) and the box.

5 Summary

In this paper, a method for independent 3D motion detection has been described
that combines motion information with stereoscopic information acquired by a
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parallel stereo con�guration. The motivation behind the proposed method is to
provide robust 3D motion segmentation by employing the minimum possible as-
sumptions about the external world and the observer. Instead of using optical ow,
the normal ow �eld is used in both stereo and motion domains. Processing of the
stereo-pair is limited to the task of scene segmentation into depth layers. Thus,
the more general problem of fully recovering scene structure is avoided. LMedS
estimation is the basic technique employed. The experimental results obtained, a
small sample of which is presented in this paper, demonstrate the robustness and
e�ectiveness of the approach. Therefore, the method may become a powerful tool
for an observer navigating in a 3D dynamic environment.
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