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Abstract— De-synchronization appears as a new paradigm to automate
the design of asynchronous circuits from synchronous netlists. This
paper studies different protocols for de-synchronization and formally
proves their correctness. A taxonomy of existing protocols for latch
controllers is provided. In particular, four-phase handshake protocols
devised for micro-pipelines are studied. A new controller with maximum
concurrency for de-synchronization is also proposed. The applicability of
de-synchronization on an implementation of the DLX microprocessor is
also described and discussed.

I. INTRODUCTION

The goal of this work is modest in the short term, but ambitious
in the long term. For many years, our community of researchers has
tried to persuade designers to use asynchrony in their circuits. Today
we can say that this effort has had the impact of a few drops in the
ocean.

We believe that there are two major reasons why asynchronous
circuits have not been widely accepted:

� There are no good CAD tools that completely cover the design
flow.

� Asynchrony involves changing most of the designers’ mentality
when devising the synchronization among different components
in a system.

This work explains how asynchrony can be incorporated without
changing the “synchronous mentality” and using conventional CAD
tools. This is the short-term goal. After that, it will hopefully be
easier to show that asynchronous circuits can perform better than
the synchronous ones in different aspects, and thus pave the way
for a truly asynchronous design flow. This the longer-term goal. We
introduce de-synchronization as an intermediate step towards a wider
acceptance of asynchronous circuits.

One could argue that the paradigm of VLSI programming [2], [16]
provides a robust framework for synthesis. However, the specification
model is based on the theory of communicating processes, which
requires the aforementioned change of mentality, and the syntax-
directed approach for synthesis concedes little support for logic-level
optimizations.

The notion of cycle lives in the subconscious of most circuit
designers. Finite state machines, pipelined microprocessors, multi-
cycle arithmetic operations, etc, are typically studied with the under-
lying idea of cycle, which is inherently assumed to be defined by a
clock. As an example, think about the traditional lecture on computer
architecture explaining the DLX pipeline. One immediately imagines
the students looking at the classical timing diagram showing the
overlapped IF-ID-EX-MEM-WB stages, synchronized at the level
of cycle. If you try to persuade the lecturer to explain the same ideas
without the notion of cycle, you may find yourself involved in a
tortuous crusade against a skeptical listener.

If we accept that cycles are nice for reasoning and designing,
but we still want an underlying asynchronous behavior, we bring
up the concept of de-synchronization. The essential idea is to start
from a synchronous synthesized (or manually designed) circuit,

and replace directly the global clock network with a set of local
handshaking circuits. The circuit is then implemented with standard
tools, using a flow originally developed for synchronous circuits. The
only modification is the clock tree generation algorithm. With this
approach we provide a design methodology that can be picked up
almost instantaneously and without risk by an experienced team.

This work gets its inspiration from a number of contributions from
past work, each providing a key element to a unique novel method-
ology. Many of the concepts that appear in this paper have been
around for a long time: handshake protocols, asynchronous pipelines,
local controllers, etc. The essential novelty of our contribution is
that it provides a fully automated synthesis flow, based on a sound
theory that guarantees correctness, does not require any knowledge of
asynchronous design by the designer, and does not change at all the
structure of synchronous datapath and controller implementation, but
only affects the synchronization network. In particular, it starts from
a standard synthesizable HDL specification or gate-level netlist, yet it
provides several key advantages of asynchronicity, such as low EMI,
global idling, and modularity.

We also argue that de-synchronization helps with determining the
true speed of a circuit, by using standard functional testing equipment,
thus providing means to partially cope with process variability. It
handles variability between dies, while variability within a die must
still be handled by using margins.

To show that the suggested methodology is sound, we provide
formal proofs of correctness based on the theory of Petri nets.
We study different handshake protocols for latch controllers and
present a taxonomy determined by the degree of concurrency of
each protocol. A controller that preserves the maximum concurrency
for de-synchronization is also presented. Moreover, we validated our
approach by comparing synchronous and de-synchronized designs
of the DLX microprocessor [11]. Both designs were implemented
using the same set of commercial EDA tools for synthesis, placement
and routing. To the best of our knowledge, this is the first time an
asynchronous design obtained through a conventional EDA flow does
not show any penalty (area, power, performance) with respect to its
synchronous counterpart.

II. PREVIOUS WORK

Sutherland, in his Turing award lecture, proposed a scheme to
generate local clocks for a synchronous latch-based datapath. His
theory for asynchronous designs has been exploited successfully by
both manual designs [9] and CAD tools [1]–[3]. That methodology is
very efficient for dataflow type of applications but is less suitable to
emulate the behavior of synchronous system by firing of local clocks
in a sort of “asynchronous simultaneity”.

In a different research area, Linder and Harden started from a
synchronous synthesized circuit, and replaced each logic gate with
a small sequential handshaking asynchronous circuit, where each
signal was encoded together with synchronization information using



an LEDR delay-insensitive code [15]. That approach bears many sim-
ilarities with ours, in particular because it generates an asynchronous
circuit from a synchronous specification, but in our opinion it attempts
to go too far because it transforms each combinational gate into
a sequential block which must locally keep track of the odd/even
phases. Thus it may have an excessive overhead, even when used for
large-granularity gates such as in FPGAs. To alleviate this overhead,
a coarse-grain approach was used in [19], but no direct apples-to-
apples comparison with a synchronous design was presented there.

Similarly, Theseus Logic proposed a design flow [14] which uses
traditional combinational logic synthesis to optimize the datapath, and
uses direct translation and special registers to generate automatically
a delay-insensitive circuit from a synchronous specification. That
approach also has a high overhead, and requires designers to use a
non-standard HDL specification style, different from the synchronous
synthesizable subset.

Kessels et al. also suggested generating the local clocks of syn-
chronous datapath blocks using handshake circuits [12], but used
Tangram as a specification language. This has some advantages,
in that synchronous block activation can be controlled at a fine
granularity level as in clock gating, but does not use a standard
synchronous RTL specification.

The generation of local clocks from handshaking circuitry while
ensuring the global “synchronicity” was first suggested in [23]. That
work however focused purely on implementation of control ignoring
the datapath part of a system.

The closest approach to ours is a doubly-latched asynchronous
pipeline suggested in [13]. That is the first work suggesting a
conversion of synchronous circuits into asynchronous ones through
replacement of flip-flops by master-slave latches with corresponding
controllers for local clocking. Our paper extends the results from [13]
by using more general synchronization schemes and provides a theo-
retical foundation for the de-synchronization approach, by proving a
behavioral and temporal equivalence between a synchronous circuit
and its de-synchronized counterpart.

We also extend with respect to our own previous work in [6], [7]
because we use a much more concurrent synchronization mechanism
(which we believe is maximally concurrent for this job), show how
previously published handshake controllers can be derived from this
maximally concurrent model by concurrency reduction, and finally
prove its equivalence to the synchronous version.

III. MARKED GRAPHS

Marked Graphs (MG) is the formalism used in this paper to model
de-synchronization. They are a subclass of Petri nets [18] that can
model decision-free concurrent systems.

Definition 3.1 (Marked graph): A marked graph is a triple���������	��
�
, where

�
is a set of events,

�������������
is the set

of arcs (precedence relation) between events and
� 
�� �������

is
an initial marking that assigns a number of tokens to the arcs of the
marked graph.

An event is enabled when all its direct predecessor arcs have a
token. An enabled event can occur (fire), thus removing one token
from each predecessor arc and adding one token to each successor
arc. A sequence of events � is feasible if it can fire from

��

, denoted

by
��
���

. A marking
���

is reachable from
�

if there exist � such
that
� �� � �

. The set of reachable markings from
� 


is denoted
by ! ��
" .

An example of marked graph is shown in Figure 3(b), where the
events #%$ and # � represent the rising and falling transitions of
signal # , respectively. In the initial marking (denoted by solid dots
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Fig. 1. (a) Synchronous circuit, (b) de-synchronized circuit.

at arcs) two events are enabled: &'$ and ()$ . The sequence of
events *+()$�( ��, $�&'$-& � #%$ ,'��" is an example of a feasible
sequence of the marked graph.

Definition 3.2 (Liveness): A marked graph is live if for any
��.

! ��
" and for any event / .�� , there is a sequence fireable from
�

that enables / .
Liveness ensures that any event can be fired infinitely often from any
reachable marking.

Definition 3.3 (Safeness): A marked graph is safe if no reachable
marking from

��

can assign more than one token to any arc.

Definition 3.4 (Event count in a sequence): Given a firing se-
quence � and an event / .0� , � � / � denotes the number of times
that event / fires in � .

The following results were proven in [5] for strongly connected
marked graphs.

Theorem 3.1 (Liveness): A marked graph is live iff
��


assigns at
least one token on each directed circuit.

Theorem 3.2 (Invariance of tokens in circuits): The token count
in a directed circuit is invariant under any firing, i.e.,

����,1��2
� 
 ��,1�

for each directed circuit
,

and for any
�

in ! � 
 " , where����,1�
denotes the total number of tokens on

,
.

Theorem 3.3 (Safeness): A marked graph is safe iff every arc
belongs to a directed circuit

,
with
� 
 ��,1�3254

.
In the rest of the paper, we will only deal with strongly connected

marked graphs.

IV. A ZERO-DELAY DE-SYNCHRONIZATION MODEL

The de-synchronization model presented in this section aims at the
substitution of the global clock by a set of asynchronous controllers
that guarantee an equivalent behavior. The model assumes that the
circuit has combinational blocks (CL) and registers implemented with
D flip-flops (FF), all of them working with the same clock edge
(e.g. rising in Fig. 1(a)).

A. Steps in the de-synchronization method

The de-synchronization method proceeds in three steps:

1) Conversion of the flip-flop-based synchronous circuit into a
latch-based one (

�
and 6 latches in Figure 1(b)).

D-flip-flops are conceptually composed of master-slave latches.
To perform de-synchronization, this internal structure is explic-
itly revealed (see Figure 1(b)) to:
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Fig. 2. A synchronous circuit with a single global clock.

a) decouple local clocks for master and slave latches (in a
D-flip-flop they are both derived from the same clock)
and

b) improve performance through retiming, i.e. by moving
latches across combinational logic.

The conversion of a flip-flop-based circuit into a latch-based
one is not specific to the de-synchronization framework only.
It is known to give an improvement in performance for syn-
chronous systems [4] and, for this reason, it has a value by
itself.

2) Generation of matched delays for the combinational logic
(denoted by rounded rectangles in Figure 1(b)).
Each matched delay must be greater than or equal to the delay
of the critical path of the corresponding combinational block.
Each matched delay serves as a completion detector for the
corresponding combinational block.

3) Implementation of the local controllers. This is the main topic
of this section.

Figure 2 depicts a synchronous netlist after the conversion into
latch-based design, possibly after applying retiming. The shadowed
boxes represent latches, whereas the white boxes represent combina-
tional logic. Latches must alternate their phases. Those with a label

�
(
4
) at the clock input represent the even (odd) latches. All latches

are transparent when the control signal is high (CLK=0 for even and
CLK=1 for odd). Data transfers must always occur from even (master)
to odd (slave) latches and vice-versa. Usually, this latch-based scheme
is implemented with two non-overlapping phases generated from the
same clock.

Initially, only the latches corresponding to one of the phases store
valid data. Without loss of generality, we will assume that these
are the even latches. The odd latches store bubbles, in the argot of
asynchronous circuits.

B. The zero-delay model

This section presents a formal model for de-synchronization. The
aim is to produce a set of distributed controllers that communicate
locally with their neighbors and generate the control signals for the
latches in such a way that the behavior of the system is preserved.
For simplicity, we assume that all combinational blocks and latches
have zero delay. Thus, the only important thing about the model
is the sequence of events of the latch control signals. The impact
of the data-path delays on the model will be discussed during the
implementation of the model (Section VI).
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Fig. 3. De-synchronization model for a linear pipeline and a ring.

For simplicity we will start by analyzing the behavior of a linear
pipeline (see Fig. 3(a)). The generalization for any arbitrary circuit
will be discussed later. Black dots represent data tokens, whereas
white dots represent bubbles. In the model, we assume that all latches
become transparent when the control signal is high. The events # $
and # � represent rising and falling transitions of the control signal
# , respectively.

Figure 3(b) depicts a fragment of the unfolded marked graph
representing the behavior of the latches. There are three types of
arcs in this model (we only refer to those in the first stage of the
pipeline):

� #%$ � # � � # $ , that simply denote that the rising and
falling transitions of each signal must alternate.

� & � � #%$ , that denotes the fact that for latch # to read a new
data token, & must have completed the reading of the previous
token coming from # . If this arc is not present, data overwriting
can occur, or in other terms hold constraints can be violated.

� #%$ � & � , that denotes the fact that for latch & to complete
the reading of a data token coming from # it must first wait for
the data token to be stored in # . If this arc is not present, &
can “read a bubble” and a data token can be lost, or in other
terms setup constraints can be violated.

The marking in Fig. 3(b) represents a state in which all latch
control signals are low and the events &'$ and ()$ are enabled,
i.e. the latches & and ( are ready to read the data tokens from #
and
,

, respectively.
Figure 3(c) shows the marked graph that derives from the unfolded
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Fig. 4. Timing diagram of the linear pipeline in Fig. 3(a-d).
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Fig. 5. Synchronization between latches: ����� .

graph in Fig. 3(b). A simplified notation is used in Fig. 3(d) to
represent the same graph, substituting each cycle �

����� �	� by a double
arc � � � � � , where the token is located close to the enabled event
in the cycle ( � in this example).

It is interesting to notice that the previous model is more aggressive
than the classical one generating non-overlapping phases for latch-
based designs. As an example, the following sequence can be fired
in the model of Fig 3(a-d):

()$�( ��, $�&'$ & � #%$ ,'��
�
�

After the events *+()$-( �5, $-&'$ " , a state in which & 20, 2 4
and # 2 ( 2 �

is reached, where the data token stored in # is
rippling through the latches & and

,
. A timing diagram illustrating

this sequence is shown in Fig. 4.
But can this model be generalized beyond linear pipelines? Is it

valid for any arbitrary netlist? Which properties does it have? We
now show that this model can be extended to any arbitrary netlist,
while preserving a property that makes the circuits observationally
equivalent to their synchronous versions: flow-equivalence [10].

C. General de-synchronization model

The general de-synchronization model is shown in Fig. 5. For each
communication between an even latch and an odd latch, the synchro-
nization depicted in Fig. 5(a) must be defined. If the communication is
between odd and even, the one in Fig. 5(b) must be defined. Note that
the only difference is the initialization. The odd latches are always
enabled in the initial state to read the data tokens from the even
latches.

By abutting the previous synchronization models, it is possible to
build the model for any arbitrary netlist, as shown in Fig. 6. The
marked graphs obtained by properly abutting the models in Fig. 5
are called circuit marked graphs (CMG).

We will now show that a de-synchronized circuit mimics the
behavior of its synchronous counterpart. For that, it must be proved
that:

� a de-synchronized circuit never halts (liveness), and
� all computations performed by a de-synchronized circuit

are the same as the ones performed by the synchronous
counterpart (flow-equivalence).
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Fig. 6. De-synchronization model for the circuit in Fig. 2.
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Fig. 7. Synchronization of a ring: (a) live model, (b) non-live model.

The remaining of this section is devoted to prove these two
statements.

D. Liveness

For the proof of liveness, the reader must bear in mind the meaning
of the double arcs � � � � � , that represent �

� ��� � � .
Theorem 4.1: Any circuit marked graph is live.

Proof: By Theorem 3.1 it is enough to prove that there is no
directed circuit in the CMG without any token. Rather than giving
a formal proof, we merely give hints that can easily lead the reader
to a complete proof. It is easy to see that there is no way to build
an unmarked path longer than 3 arcs. As an example, let us try to
find the longest unmarked path from ()$ in the CMG of Fig. 3(c).
After building the path ()$ � ( � � , $ � ,'� , it is not possible
to extend it unless a marked arc is included, either

,'��� � , $ or,'� � � &'$ . A case by case study leads to a complete proof.
Liveness guarantees something crucial for the model: absence of

deadlocks. This property does not hold automatically for every “rea-
sonable” model. Figure 7 depicts two different de-synchronization
models for a ring, that can be obtained by connecting the output of
latch ( with the input of latch # in Fig. 3(a). Figure 7(a) depicts a
non-overlapping model between adjacent latches, whereas Fig. 7(b)
uses a four-phase handshake with the sequence #�$�& $�# � & �
for each pair of adjacent latches.

When building the protocol for a ring, the second model is not live
due to the unmarked cycle:

# � � & ��� ,'��� ( � � # ��
One can easily understand that after firing events #%$ and

, $ , the
system enters a deadlock state. It is also easy to prove that this model
is live for acyclic netlists.

The acid test of liveness for a handshake protocol consists of
connecting two controllers back-to-back for a two-stage ring (see
Fig. 3(e)). Figure 3(f) depicts the unfolded behavior after including
all causality constraints for the communication # � & and & � # .



The folded behavior is shown in Fig. 3(g), that can also be obtained by
combining the synchronization models of Fig. 5(a) and 5(b). Several
arcs become redundant, thus deriving the simplified model shown in
Fig. 5(h).

Interestingly, the resulting protocol derived from the “aggressive”
concurrent model is “naturally” transformed into one that is non-
overlapping, live and safe. Note that a two-stage ring is typically
derived from the implementation of a finite-state machine, in which
the current state stored in a register is fed back to the same register
after going through the combinational logic that calculates the next
state. As an example, the handshake protocol between latches

,
and

( in Fig. 2 (see Fig. 6 also) becomes non-overlapping.

E. Flow-equivalence

In this section we will prove that a de-synchronized circuit mimics
its synchronous counterpart. We will show that, for each latch, the
value stored at the � -th pulse of the control signal is the same as the
value stored at the � -th cycle of the synchronous circuit.

We first present some definitions that are relevant for synchronous
circuits.

Definition 4.1 (Synchronous behavior): Given a block # (combi-
national logic and latch), we call ��� the logic function calculated by
the combinational logic. We call #�� the value stored in # ’s latch after
the � -th clock cycle. Let us call � � �� ��� the (even) predecessor
latches of and odd latch 	 , and 	 �  � 	 � the (odd) predecessor
latches of and even latch � . Then,

� 	
� 2 ��� � � ��� � �� � � � ��� � � , and
� � � 2 ��� � 	 �� �� � � 	 � � �

where all even blocks store a known initial value at cycle 0.
For the sake of simplicity here we model a closed circuit, i.e. one

without primary inputs from the environment. The environment can
be considered explicitly either by slightly changing the proofs, or by
modeling it as a non-deterministic function. The latter mechanism
also allows us to show how a de-synchronized circuit can be inter-
faced with a synchronous one (the environment), namely by driving
its input handshake signals with the global clock and ignoring its
output handshake signals. The latter must be shown to follow the
correct protocol by means of appropriate timing assumptions.

The behavior of a synchronous circuit can be defined as the set of
traces observable at the latches. If we call � � �  ��� and 	 � �  	��
the set of even and odd latches, respectively, the behavior of the
circuit can be modeled by an infinite trace in which each element of
the alphabet is an

��� $�� � -tuple of values:

cycle ����� trace

initial � � �
 . . . � �
 � �

. . .

� �

1  � �
 . . . � �
 � �� . . .

� � �
� � �� . . . � �� � �� . . .

� � �
2  � �� . . . � �� � �! . . .

� �!
...

...
..."  � ��� � . . . � ��� � � �� . . .

� ��
� � �� . . . � �� � �� . . .

� ��"$#   � �� . . . � �� � ��&% � . . .
� ��'% �

If we project the trace onto one of the latches, say # , we obtain a
trace # 
 # �  � #�� �  , i.e. the sequence of values stored in latch #
at each cycle.

We now present a lemma that guarantees a good alternation of
pulses between adjacent latches.

Lemma 4.1 (Synchronic distance): Let
����� ������
�

be a CMG, �
and 	 two adjacent blocks such that � is even and 	 is odd, and �
a sequence fireable from

��

.
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Fig. 8. Flow equivalence.

1) If � transfers data to 	 then

� � � $ �)( � � 	 ���*( � � � $ � $ 4
2) If 	 transfers data to � , then

� � � ���)( � � 	 $ �*( � � � ��� $ 4
Proof: Both inequalities hold by the existence of the double arcs

� $,+-	 � or 	 $,+.� � that guarantee the alternation between
both events. The initial marking is the one that makes the difference
between the even-to-odd and odd-to-even connections.

This lemma states that adjacent latches alternate their pulses
correctly, which is crucial to preserve flow equivalence1 .

We now present the notion of flow-equivalence [10], which is
related to that of synchronous behavior in [15], in terms of the
projection of traces onto the latches of the circuit.

Definition 4.2 (Flow equivalence): Two circuits are flow-
equivalent if

1) They have the same set of latches and
2) For each latch # , the projections of the traces onto # are

the same in both circuits.
Intuitively, two circuits are flow-equivalent if their behavior cannot

be distinguished by observing the sequence of values stored at each
latch. This observation is done individually for each latch and, thus,
the relative order with which values are stored in different latches
can change, as illustrated in Figure 8. The top diagram depicts the
behavior of a synchronous system by showing the values stored in
two latches, # and & , at each clock cycle. The diagram at the
bottom shows a possible de-synchronization. From the diagram one
can deduce that latches # and & cannot be adjacent (see Lemma 4.1),
since the synchronic distance of their pulses is sometimes greater
than 1 (e.g. & has received 5 pulses after having stored the values
*0/ � 4 �21 �43 � 4" , while # has only received two pulses storing * 4 �53 " ).

The following theorem is the main theoretical result of this paper.

Theorem 4.2: The de-synchronization model preserves flow-
equivalence.

Proof: By induction on the length of the trace.

Induction hypothesis: For any latch # , flow-equivalence is preserved
for the first � ��4 occurrences of # � and until a marking is reached
with the � -th occurrence of # � enabled (see Fig. 9). The marking
of the arcs �76 $ � �86 � � �86 $ or 	�6 $ � 	�6 � � 	�6 $ is
irrelevant for the hypothesis.

Basis: The induction hypothesis immediately holds for odd latches in
the initial state (Fig. 9(a)). For even latches (see Fig. 9(b)), it holds

1A similar result was derived in [15] also based on Marked Graph
Theory, using however a very different circuit structure and implementation
philosophy.
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Fig. 9. Illustration of Theorem 4.2.

after having fired 	 � $ �� 	 � $ once from the initial state. This
single firing preserves flow-equivalence since each latch 	 6 receives
the value

	 6 � 2 � ��� � � �
 ���� � � �
 �
obtained from the initial value of � � ��   � ��� , the (even) predecessor
latches of 	�6 .

Induction step (case 	 odd). Since the � -th firing of 	 � is enabled we
know that each �86 $ transition has fired � � 4 times (see Lemma 4.1)
and, by the induction hypothesis, stores the value � 6�� � . Therefore,
the next firing of 	 � will store the value

	
� 2 ��� � � ��� � � �� � � ��� � �
which preserves flow-equivalence. Moreover, the � -th firing of � 6 $
will occur after 	 has been closed, since the arc 	 ��� � 6 $ forces
that ordering. This guarantees that no data overwriting will occur on
latch 	 .

Induction step (case � even). Since � � has fired � � 4 times, then
	�6 $ has fired � times, according to Lemma 4.1. Since the 	86 latches
are odd, they store the values 	 6� , by the induction hypothesis and
the previous induction step for odd latches. The proof now is reduced
to case of 	 being even, in which:

	 � 2 � � � � �� ���  � � �� �
This concludes the proof, since induction guarantees flow-equivalence
for any latch # and for any number firings of # � .

V. HANDSHAKE PROTOCOLS FOR DE-SYNCHRONIZATION

Section IV presented a model for de-synchronization that defines
the causality relations among the latch control signals for a correct
flow of data in the data-path. Now it is time to design the controllers
that implement that behavior.

Several handshake protocols have been proposed in the literature
for such purpose. The question is: are they suitable for a fully
automatic de-synchronization approach? Is there any controller that
manifests the concurrency of the de-synchronization model proposed
in this paper?

We now review the classical four-phase micropipeline latch control
circuits presented in [8]. For that, the specification of each controller
(figures 5, 7 and 11 in [8]) has been projected onto the handshake
signals (Ri, Ai, Ro, Ao) and the latch control signal ( # ), thus abstract-
ing away the behavior of the internal state signals2. The projection

2In fact, � is the signal preceding the buffer that feeds the latch control
signal. The polarity of the signal has been changed to make the latch
transparent when � is high.
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has been performed by preserving observational equivalence3 .
Figures 10(a-c) show the projections of the controllers from [8].

The leftmost part of the figure depicts the connection between an
even and an odd controller generating the latch control signals #
and & respectively. The rightmost part depicts only the projection
on the latch control signals when three controllers are connected in
a row.

The controllers from [8] show less concurrency than the de-
synchronization model. For this reason, we also propose a new
controller implementing the protocol with maximum concurrency
proposed in this paper (Figure 10(e)). For completeness, a handshake
decoupling the falling events of the control signals (fall-decoupled)
is also described in Figure 10(d).

In all cases, it is crucial to properly define the initial state of
each controller, which turns out to be different for the even and odd
controllers. This is an important detail often missed in many papers

3For those users familiar with petrify, the projection can be obtained
by hiding signals with the option -hide.
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describing asynchronous controllers.
The question now is: which ones of these controllers are suitable

for de-synchronization? Instead of studying them one by one, we
present a general study of four-phase protocols, illustrated in Fig. 11.
The figure describes a partial order defined by the degree of concur-
rency of different protocols. Each protocol has been annotated with
the number of states of the corresponding state graph. The marked
graphs in the figure do not contain redundant arcs.

An arc in the partial order indicates that one protocol can be
obtained from the other by a local transformation (i.e. by moving
the target of one of the arcs of the model). The arcs #%$ + # �
and & $ +�& � cannot be removed for obvious reasons (they can
only become redundant). For example, the semi-decoupled protocol
(5 states) can be obtained from the rise-decoupled protocol (6 states)
by changing the arc4 #%$ ���� & � to the arc # $ ���� & $ , thus
reducing concurrency.

The model with 8 states, labeled as “de-synchronization model”,
corresponds to the most concurrent model presented earlier in this
paper, for which liveness and flow-equivalence have been proved in
Sect. IV. The other models are obtained by successive reductions or
increases of concurrency.

The nomenclature rise- and fall-decoupled has been introduced
to designate the protocols in which the rising or falling edges of the
pulses have been decoupled, respectively. The rise-decoupled protocol
corresponds to the fully decoupled one proposed in [8].

We will now show that all models in Fig 11, except those that
are shadowed, are suitable for de-synchronization. For that, we will

4Note that this arc is not explicitly drawn in the picture because it is
redundant.

analyze the properties of liveness and flow-equivalence.

A. Liveness

We will focus on the liveness of the two sequential protocols:
simple and non-overlapping. The proofs of liveness are similar to that
of Theorem 4.1, and are left to the reader. Instead, we will illustrate
intuitively the liveness proofs of these protocols by trying to pass the
acid test mentioned above: building a two-stage ring (see Fig. 3(e)).

It is clear that the non-overlapping protocol is live, given that this is
the protocol to which the most concurrent model reduces when two
controllers are connected back-to-back. However, the simple four-
phase protocol does not pass this test:

# $ � &'$ � # � � & � � 
�
 

Any trace will eventually visit a state in which # 2 & 254 which will
produce data overwriting in the ring. To avoid data overwriting and
deadlock, at least three latches in a ring are required, with only one
data token circulating [17]. That would require substituting each flip-
flop with three latches, which would in turn introduce a potentially
substantial penalty in terms of both area and performance.

B. Flow-equivalence

For the models with less than 8 states, obtained by concurrency
reduction, the property of flow-equivalence holds automatically, since
the traces produced by any of these models are always traces of
the most concurrent model for de-synchronization, for which flow-
equivalence has already been proved in Theorem 4.2.

On the other hand, the two models at the bottom, with 10 states
each, have been obtained by increasing concurrency. The model
on the left is obtained by changing the arc & � � # $ to the
arc & � � # � . By observing Fig. 3(b), this would correspond to
shifting the arrow # $ � & � one step forward and converting it into
# � � & � . The reader can easily deduce that this transformation can
produce data overwriting on latch & , since the value of # can change
without having stored the previous value in & . Therefore, this model
does not preserve flow-equivalence.

The model on the right is obtained by changing the arc # $ � & �
to the arc #%$ � & $ . It can be easily shown that this model does
not preserve flow-equivalence either.

This figure illustrates our belief (for which we do not have a
formal proof) that the “de-synchronization model” is the maximally
concurrent controller among those which preserve flow equivalence.

Both models at the bottom of Fig. 11 are unsafe, since the arcs
between events of the control signals for # and & can hold two
tokens in some reachable markings.

The conclusion is that all handshake protocols in Fig. 11, except-
ing the simple four-phase protocol presented in [8] and the two
models at the bottom, are suitable for de-synchronization.

Only the specific implementation characteristics of each one (area,
power, performance) determine the best choice.

Hybrid de-synchronization approaches

An important aspect to notice is that de-synchronization can be
performed by using different types of controllers, e.g. by choosing
the most concurrent one for critical cycles within the latch-to-latch
graph, and less concurrent ones for non-critical cycles. This would
reserve the most complex controllers only for those portions of the
circuit where they are vital to improve the performance, and use
cheaper ones where they do not affect the global performance.

Property 5.1: Any hybrid approach using any of the valid con-
trollers shown in Fig. 11 is valid for de-synchronization.



The proof of this property is simple and is briefly sketched now. Let
us assume that we have a de-synchronized circuit with different types
of controllers among all the latches. Liveness and flow-equivalence
can be proved as follows:

� Liveness. Let us start from the sequential non-overlapping
model for each controller. The obtained circuit is live, as
proved in Theorem 4.1. By substituting each controller with the
corresponding one in the hybrid approach, a new circuit with
more concurrency is obtained. Therefore, the hybrid circuit is
also live.

� Flow-equivalence. In this case we start from the most concur-
rent model for each controller. By substituting each controller
with the corresponding one in the hybrid approach, a new circuit
that is less concurrent is obtained. All the operations performed
by this circuit are “flow-equivalent” to the ones of the most
concurrent model.

Therefore, the flexibility of using any of the controllers for any
latch in a de-synchronized circuit offers an avenue of possibilities
to explore different trade-offs with respect to area, performance and
power consumption.

C. GasP, IPCMOS and MOUSETRAP

We briefly review some other existing protocols without analyzing
the particular details of each implementation.

The behavior of the GasP [22] and IPCMOS protocols [20]
corresponds to the fall-decoupled model. The arc # $ � & $ is
guaranteed by the logic of the controllers whereas the arc & � � #%$
is guaranteed by the timing assumptions used in the implementation
(pulses are short). If the generated pulses at different stages have a
similar width, then these protocols can be observably equivalent to
the semi-decoupled or non-overlapping models.

MOUSETRAP [21] is also another protocol for asynchronous
pipelines. It is extremely simple and efficient for acyclic pipelines,
including fork and join structures. However, the causality relations
of the abstract model are complex and cannot be represented by
a marked graph. The model has causality arcs that go beyond
neighboring stages. These extra arcs preclude the model to be used
for cyclic structures. As an example, it is impossible to build a 2-
stage MOUSETRAP ring that implements a live and flow-equivalent
protocol. The states in which the two latch control signals are both
low or high are deadlock states.

VI. IMPLEMENTATION OF DE-SYNCHRONIZATION CONTROLLERS

The protocols described in Sect. V can be implemented in different
ways using different design styles. In this section, the detailed logic
design of one of the controllers is presented.

We have chosen the semi-decoupled four-phase handshake protocol
proposed by Furber and Day [8]. We present an implementation with
static CMOS gates, while the original one was designed at transistor
level. The reasons for the selection of this protocol with this particular
design style are several:

� We pursue an approach suitable for semi-custom design using
automatic physical layout tools.

� The semi-decoupled protocol is a good trade-off between sim-
plicity and performance.

� The pulse width of the latch control signals will be similar if all
controllers are similar. Moreover, the depth of the data-path logic
usually has a delay that can be overlapped with the controller’s
delay. Therefore, the arcs #%$ � &'$ and # � � & � do not
impose performance constraints in most cases.
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In case of time-critical applications, other controllers can be used,
including hybrid approaches combining protocols different from the
ones shown in Fig. 11.

Figure 12 depicts an implementation of a pair of controllers (even
and odd) for a fragment of data-path. The figure also shows the
marked graphs modeling the behavior of each controller. The only
difference is the initial marking, that determines the reset logic (signal
RST).

Resetting the controllers is crucial for a correct behavior. In this
case, the even latches are transparent and the odd latches opaque in
the initial state. With this strategy, only the odd latches must be reset
in the data-path. The implementation also assumes a relative timing
constraint (arc

��� ��� � � $ ) that can be easily met with the actual
design5.

The controllers also include a delay that must be matched with
the delay of the combinational logic and the pulse width of the latch
control signal.

Each latch control signal ( � and 	 ) is produced by a buffer that
drives all latches. If all the buffer delays are similar, they can be
neglected during timing analysis.

In particular, the delay of the sequence of events

� $ � ������� � � � logic delay
� 	 $

is the one that must be matched with the delay of the combinational
logic plus the delay of a latch. The event

������� � � corresponds to
the falling transition of the signal

������� � between the � - and 	 -
controllers. On the other hand, the delay of the sequence

	 $ � #
� � # � � � ������� � $ � pulse delay
� 	 �

is the one that must be matched with the minimum pulse width. It is
interesting to note that both delays appear between transitions of the
control signals of

� � and 	 , and can be implemented with just one
asymmetric delay.

5This assumption also allows us to simplify the implementation proposed
in [8]: the equation for � # becomes 	 � � instead of 	 � ��
�� 	����� .
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The control can be generalized for multiple-input/multiple-output
blocks. In that case the req/ack signals of the protocols must be
implemented as a conjunction of those coming from the predecessor
and successor controllers, by using C-elements. As an example,
Fig. 13 shows the de-synchronization control for the circuit depicted
in Fig. 2.

A. Fall-decoupled and maximum concurrency controllers

For completeness, we present the design of the fall-decoupled con-
troller and the controller with maximum concurrency, corresponding
to the de-synchronization protocol presented in this paper.

Possible implementations are presented in Figs. 14 and 15. The
latch control signal is # (transparent when # 2 4 ), whereas � and� are internal signals required to properly encode the state space.

The Boolean equations that model the behavior are shown at the
right of the marked graph. Two types of equations are provided: those
for an implementation based on asymmetric C-elements (e.g. # ��$
and # � � ), and those for a complex-gate implementation (e.g. # � ).
One can observe that the equations are simple and can be easily
implemented with static CMOS gates. For brevity, no details are
provided on where the matched delays must be inserted and on how
to initialize the circuit for odd and even latches.
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ID/EX

ARB/
SYNC

IF/ID

B/
H/
WEX/MEM

IF ID

32

NPC

interface

IMEM
instruction

stall, branch, intr, FROZEN

FREEZE

opcode,

FIFOs
regid

32 branch address
INTERRUPT

INT

external

EX MEM

32

4

DATA

DMEM
interface

32

ADDR
32

MEM/WB

IF Latch Control EX Latch ControlID Latch Control

buffers
write−back index 5

write−back data 32

MEM Latch Control

Fig. 16. De-synchronized DLX.

VII. DE-SYNCHRONIZATION OF THE DLX MICROPROCESSOR

We present results on the application of de-synchronization to
a DLX processor [11]. The de-synchronized DLX consists of five
architectural DLX pipeline stages, four of which actually correspond
to circuit blocks (at the circuit level WB is merged with ID). Each
block is controlled by its own latch controller. The arrows of the
latch controllers correspond to their � and 6 signals, and illustrate
the datapath dependencies. Stages ID, EX and MEM form a ring.
ID is the heart of the processor containing the Register File and
all hazard-detection logic and synchronizes stages IF and MEM.
Thus, instructions leaving MEM (for WB) will synchronize with
instructions coming from IF. Data hazard detection takes place by ID
comparing the output register of instructions in other pipeline stages
and their opcodes, and deciding on inserting the correct number of
NOPs6.

After the initial synthesis of each circuit block using latches, the
whole design is optimized incrementally to meet all timing require-
ments. Max-delay constraints between latches are used to ensure
cycle time in the datapaths but the control blocks are untouched
inside the synthesis tool. Then the gate-level netlist and matching
timing constraints are placed and routed. We show the results of two
flows, both of which use industrial-strength tools. The former uses the
classical synthesis, placement and routing sequence. The latter adds
one stage of placement-aware synthesis. The former is “safer”, area-
oriented and aimed equally at flip-flop-based and latch-based designs.
The latter is more aggressive, timing-oriented and aimed at flip-flop-
based designs. In all cases, post-route optimization is iterated until all
timing violations are fixed. All layouts, except for de-synchronized
flow 2, are flat.

Table I contrasts the characteristics of the synchronous flip-flop and
latch-based designs, and of the de-synchronized latch-based design.
The data are post-layout results based on gate-level simulations
with back-annotation of extracted parasitics. Both clock period and
waveform (in the synchronous cases) and controller matched delays
(in the asynchronous case) were tuned in order to achieve the
minimum cycle in each case. The reported cycle time of the de-
synchronized design using flow 2 is actually the average between two
alternating cycle times generated by the controllers, of 4.12 and 3.60���

. If the circuit must be operated synchronously at its interfaces,
then the worst-case value of 4.12

���
must be used. The area of

6This simple architecture does not include forwarding, but it makes manual
insertion of the latch controllers easier. With the automation of the flow, we
will be able to handle much more complex RTL and gate level designs.



Sync. Sync. De-Sync.
FF Latch Latch

Cycle Time ( ��� ) 8.00 6.60 5.06
Flow 1 Dyn. Pow. ( � � ) 44.75 53.88 48.94

Area ( ��� ! ) 2.66 2.22 2.43

Cycle Time ( ��� ) 3.60 4.10 3.89
Flow 2 Dyn. Pow. ( � � ) 93.23 92.34 105.21

Area ( ��� ! ) 2.66 2.22 4.64

TABLE I
SYNCHRONOUS VS. DE-SYNCHRONIZED DLX.

the same design is much larger than the others because we had to
implement it using hierarchical placement and routing, in order to
properly constrain the clock trees. This is just a temporary solution,
and the results will certainly be improved when we will manage to
implement it as a flat layout, as in all the other cases. It also explains
the higher power consumption in this case.

One can see that all designs have approximately the same area,
speed and power consumption. Differences between them can be
attributed more to the different abilities of the two flows to optimize
for different objectives (area vs. performance, latch vs. flip-flops),
rather than to the synchronous or asynchronous implementation of
each circuit.

VIII. CONCLUSIONS

This paper presented a de-synchronization model that can be used
to automatically substitute the clock network of a synchronous circuit
by a set of asynchronous controllers.

To the best of our knowledge, this is the first successful attempt
of delivering an automated design flow for asynchronous circuits
that does not introduce significant penalties with respect to the
corresponding synchronous designs. This opens wide opportunities
of exploring the implementation space (both synchronous and asyn-
chronous) within the very same set of industrial tools. This, we
believe, is a valuable feature for a designer.

The suggested methodology can result in EMI improvements,
shorter design cycles, and partitioning of the clock trees. Moreover,
it provides the foundation for achieving power savings and other
advantages of true asynchronous implementation through more fine-
grained de-synchronization. We believe that our flow, while not
providing all the advantages that asynchronous circuits promise, is
a significant step towards spreading the use of asynchronous circuits
among mainstream designers.
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