
A concurrent model for de-synchronization
J. Cortadella

Univ. Politècnica de Catalunya
Barcelona, Spain

A. Kondratyev
Cadence Design Systems

San Jose, USA

L. Lavagno
Politenico di Torino

Torino, Italy

C. Sotiriou
FORTH

Crete, Greece

Abstract— This paper shows how asynchronous circuits can
be derived from optimized synchronous circuits by replacing the
clock distribution tree by a handshaking network. A concur-
rent model for de-synchronization is presented and behavioral
properties are proved. A case study shows the applicability
of the method and the potential benefits of de-synchronizing
synchronous circuits.

I. INTRODUCTION

When the number of gates on a chip is quickly growing
toward and beyond the one billion mark, keeping them all
running at the beat of a single or a few rationally related
clocks is becoming impossible. Nevertheless the synchronous
methodology clearly dominates in today’s design community.
The main problem that prevents a widespread adoption of
asynchronous design technology is, in our opinion, the lack
of a design methodology that can be picked up almost in-
stantaneously and without risk by an experienced team, used
to design synchronous logic with the standard RTL-to-GDSII
flow based on synthesis, placement and routing.

This work gets its inspiration from a number of contribu-
tions from past work, each providing a key element to a unique
novel methodology. The essential novelty of our contribution
is that it does not require any knowledge of asynchronous
design, in particular it starts from a standard synthesizable
HDL specification or gate-level netlist, yet it provides several
key advantages of asynchronicity, such as low clock power,
low EMI, automated global idling, and modularity. In the
last section of this paper we also discuss how further design
automation support can also provide some level of automated
local idling and average case performance.

A. The Basic Idea

The essential idea of the de-synchronization approach is
to start from a fully synchronous synthesized (or manually
designed) circuit, and then replace directly the global clock
network with a set of local handshaking circuits.

The key advantage of the de-synchronized circuit with
respect to the corresponding synchronous circuit is that it no
longer requires the clock tree. This tree must be designed
with high-powered gates in order to ensure fast propagation
with tightly controlled skews. Data from real designs shows
that between 30 and 50% of the total dynamic power in a
high-performance ASIC is dissipated in the clock network.
Our method dramatically reduces it, since clocks are locally
generated without dangerous skew effects. Moreover, EMI is

also drastically reduced, since flip-flops or latches no longer
switch simultaneously.

Margins due to transistor and interconnect variability can
also be reduced, because matched delays can be laid out close
to the logic they control. Thus the impact of temperature-
related and manufacturing-related variations will be similar
in both delay lines and combinational logic.

In this paper we also show that a partial elimination of
the clock ensures synchronous interfacing with the rest of
the world and improves yield, since it reduces the number of
paths that are “almost critical” and can fail due to parametric
variations.

B. Previous Work

If we look at the literature, we find several related ideas.
Sutherland, in his Turing award lecture, proposed a scheme to
generate local clocks for a synchronous latch-based datapath.
His goal was to create a design theory for asynchronous
designs, which has been exploited successfully by both manual
designs [1] and CAD tools [2–4]. This methodology is very
efficient for dataflow type of applications but is less suitable
to emulate the behavior of synchronous system by firing of
local clocks in a sort of “asynchronous simultaneity”.

In a totally different research area, Linder and Harden
started from a synchronous synthesized circuit, and replaced
each logic gate with a small sequential handshaking asyn-
chronous circuit, where each signal was encoded together with
synchronization information using an LEDR delay-insensitive
code [5]. This approach bears many similarities with ours, but
in our opinion it attempts to go too far, and has an excessive
overhead, even when used for large-granularity gates such as
in FPGAs.

Similarly, Theseus Logic proposed a design flow [6] which
uses traditional combinational logic synthesis to optimize the
datapath, and uses direct translation and special registers
to generate automatically a delay-insensitive circuit from a
synchronous specification. This approach also has a high
overhead.

The generation of local clocks from handshaking circuitry
while ensuring the global “synchronicity” was first suggested
in [7]. This work however focuses purely on implementation
of control ignoring the datapath part of a system.

The closest approach to ours is a doubly-latched asyn-
chronous pipeline suggested in [8]. This is the first work
suggesting a conversion of synchronous circuits into asyn-
chronous ones through replacement of flip-flops by master-

slave latches with corresponding controllers for local clocking.
Our paper extends the results from [8] by using more general
synchronization schemes and provides a theoretical foundation
for de-synchronization approach by proving a behavioral and
temporal equivalence between synchronous circuit and its
de-synchronized counterpart. We also show experimentally
that getting rid of the clock in synchronous design indeed
materialises in significant power consumption savings.

In the rest of this paper we introduce the de-synchronization
step as a purely logical transformation in Section III. Sec-
tion IV-A discusses timing properties of de-synchronized
designs and shows their timing compatibility to synchronous
counterparts. A particular implementation of local controllers
for de-synchronized designs is given in Sectionsec:implement.
Finally Section VI presents an experimental study on de-
sycnhronizing DES encryption core.

II. MARKED GRAPHS

Marked Graphs (MG) is the formalism used in this paper to
model de-synchronization. They are a subclass of Petri nets [9]
that can model decision-free concurrent systems.

Definition 2.1 (Marked graph): A marked graph is a triple���������	��

�
, where

�
is a set of events,

�������������
is the set

of arcs (precedence relation) between events and
�
�� �������

is an initial marking that assigns a number of tokens to the
arcs of the marked graph.

An event is enabled when all its direct predecessor arcs have
a token. An enabled event can occur (fire), thus removing one
token from each predecessor arc and adding one token to each
successor arc. A sequence of events � is feasible if it can fire
from

�

, denoted by

�
���
. A marking

���
is reachable from�

if there exist � such that
� ���� �

. The set of reachable
markings from

�

is denoted by �
"! .

An example of marked graph is shown in Figure 3, where
the events #�$ and # � represent the rising and falling transi-
tions of signal # , respectively. Under the given initial marking
(denoted by solid dots at arcs) two events are enabled #�$ and% $. The sequence of events #�$ � # ��� % $ � % ���'& $ �)(*(+(is an
example of a feasible sequence of the marked graph.

Definition 2.2 (Liveness): A marked graph is live if for any�-, ��
 ! and for any event . ,/� , there is a sequence firable
from

�
that enables . .

Liveness ensures that any event can be fired infinitely often
from any reachable marking.

Definition 2.3 (Safeness): A marked graph is safe if no
reachable marking from

�0

can assign more than one token

to any arc.
Definition 2.4 (Event count in a sequence): Given a firing

sequence � and an event . ,1� , � � . � denotes the number of
times that event . fires in � .

The following results for marked graphs were proven
in [10].

Theorem 2.1 (Liveness): A marked graph is live iff
�

assigns at least one token on each directed circuit.
Theorem 2.2 (Invariance of tokens in circuits): The token

count in a directed circuit is invariant under any firing, i.e.,

FF FF FF

CLK

(b)

(a)

gen gen gen gen gen gen
CLK CLK CLK CLK CLK CLK

CLCL

M S M S M SCLCL

Cm Cs

Fig. 1. Synchronous (a) and de-synchronized (b) circuits

�2� % �435�6
7� % �
for each directed circuit

%
and for any

�
in �6
 ! , where

�2� % �
denotes the total number of tokens on%

.
Theorem 2.3 (Safeness): A marked graph is safe iff every

arc belongs to a directed circuit
%

with
�0
7� % �83:9

.

III. A ZERO-DELAY DE-SYNCHRONIZATION MODEL

The de-synchronization models presented in this section aim
at the substitution of the global clock of a circuit by a set
of asynchronous controllers that guarantee an equivalent be-
havior. The models assume that the circuit has combinational
blocks (CL) and registers implemented with D flip-flops (FF),
all of them working with the same clock edge (e.g. rising in
Figure 1(a)).

The de-synchronization method proceeds in three steps:

1) Conversion of the flip-flop-based synchronous circuit
into a latch-based one (

�
and ; latches in Figure 1(b))

D-flip-flops internally are often composed of master-
slave latches. To perform de-synchronization this inter-
nal structure is revealed explicitly (see Figure 1(b)) to:

a) decouple local clocks for master and slave latch (in
a D-flip-flop they are both derived from the same
source

%=<?>
) and

b) improve performance through retiming, i.e. by
moving latches across combinational logic.

The conversion of a flip-flop-based circuit into a latch-
based one is not specific to the de-synchronization
framework only. It is known to give an improvement
in performance [11] for synchronous systems, and due
to this has a value by itself.

2) Generation of matched delays for combinational logic
(denoted by rounded rectangles in Figure 1(b)).
Each matched delay must be greater than or equal to
the delay of the critical path of the corresponding com-
binational block. Matched delay serve as a completion
detector for the corresponding combinational block.

3) Implementation of controllers for local clocks.
As illustrated in Figure 1(b), request signals from prede-
cessor registers are delayed by at least the combinational

A

DC

B E

0

0

01

1

CLK

F

1

G1

Fig. 2. A synchronous circuit with a single global clock.

logic worst-case propagation time, in order to satisfy
setup time constraints. The clock generation logic waits
for the last of these requests to arrive, and for the last
acknowledge, signaling that hold constraints are satisfied
for all successor registers and that they are ready to
proceed. Then a clock edge is generated, signaled to both
predecessors and successors, and the handshake cycle is
closed, waiting to produce a new edge.

Figure 2 depicts a synchronous netlist after conversion
into latch-based design, possibly after applying the “safe”
retiming mentioned above. The shadowed boxes represent
latches, whereas the white boxes represent combinational
logic. Latches must alternate their phases. Those latches with
a label � (

9
) at the clock input represent the even (odd) latches,

trasparent when the clock is low (high). Data transfers must
always occur from even (master) to odd (slave) latches and
vice-versa.

Initially, only the latches corresponding to one of the phases
store valid data. Without loss of generality, we will assume that
these are the even latches. The odd latches store bubbles, in
the argot of asynchronous circuits.

This section presents two models for de-synchronization.
The first one is presented for its simplicity, and can be
considered as a restricted case of the second. The formal
proofs of correctness will be only presented for the second
model.

For simplicty, we will also assume that all combinational
blocks and latches have zero delay. Thus, the only important
thing about the model is the sequence of events of the latch
control signals. A timed model, and its performance, will be
presented in Section IV.

A. Non-overlapping de-synchronization model

In the synchronous methodology, latched designs are nor-
mally clocked by two-phase non-overlapping clocks. The first
de-synchronization model is a direct implementation of this
scheme.

A timing diagram and the corresponding marked graph
for a simple pipeline is depicted in Fig. 3. The latches are
transparent when the control signal is high. Initially, only half
of the latches contain data (�). Data items flow in such a way

A B C D
Asynchronous control

A

D

C

B

D D

A+

A−

B−

B+

C+

C− D+

D−

Fig. 3. Non-overlapping de-synchronization model.

A

D

C

B

B−

C− D+

D−

B+

C+A+

A−

Fig. 4. Overlapping de-synchronization model.

that a latch never captures a new item before the successor
latch has captured the previous one.

Since the pulses for adjacent latches are non-overlapping,
data overwriting can never occur. However, contrary to com-
mon belief, the need for a non-overlapping scheme to avoid
races could be relaxed, as discussed below.

B. Overlapping de-synchronization model

Figure 4 shows another model that allows clock pulses
of adjacent latches to overlap. This model is based on the
observation that a data item can ripple through more than one
latch as long as the previous values stored in those rippling
latches have already been captured by the successor latches.
As an example, event

& $ can fire as soon as data is available
in # (arc #�$ � & $) and the previous data in

&
has been

captured by
%

(arc
% ��� & $).

The formal model for this de-synchronization is depicted in
the marked graph of Fig 4. The arc # �2� #=$ is included
to model the alternation of #=$ and # � at one end of the
pipeline. This arc is redundant for the other events.

It is easy to understand that the model of Fig. 3 can be
obtained by reducing the concurrency of the model in Fig. 4.
In particular, arcs #�$ � & $,

& $ � % $,
(()(

, must be
converted into arcs # � � & $,

& �-� % $,
(()(

. This
conversion unfortunately precludes the overlapping of pulses.

However, can we extend these models beyond linear
pipelines? Are they valid for any arbitrary netlist? Which prop-
erties do these models have? We now show that these models
can be extended to any arbitrary netlist, while preserving a
property that makes the circuits observationally equivalent to

B+

B−

A+

A−

B+

B−

A+

A−

e1 e2

e3

e4

(a) (b)

Fig. 5. Synchronization between latches: (a) even � odd, (b) odd � even.

C+

C−

D+

D−

E+

E−

F+

F−

B+

B−

A+

A−G+

G−

Fig. 6. De-synchronization model for the circuit in Fig. 2.

their synchronous versions: flow equivalence [12].

C. General de-synchronization model

We now generalize the overlapping model and prove its
correctness. A similar analysis, not discussed in this paper,
can be done for the non-overlapping model.

The de-synchronization model is shown in Fig. 5. It models
the communication of data from block # to block

&
.

The procedure to build the de-synchronization marked graph
model for a synchronous circuit is as follows:
� For each block # , define events #�$ and # � and the arcs
#�$ � # � and # ��� #�$. Put a token on # � � #=$.� For each pair of blocks # and

&
, such that data are

transferred from # to
&

, define the arcs #�$ ��& $ and& � � #=$. If # is even, put a token on #=$ �-& $,
otherwise put a token on

& ��� #�$.

The previous procedure creates a marked graph of a certain
class that we will call circuit marked graph (CMG). In this
model, the arcs # ��� #�$ will be usually redundant.1

Figure 6 depicts the de-synchronization marked graph for
the circuit in Fig. 2.

It is interesting to notice that, in those cases in which two
latches create a cycle (e.g.

%
and

�
in Fig. 2), the model

implictly generates a non-overlapping protocol for the pulses,
which is the only correct one in this case. For example, the
pulses for

%
and

�
commit to the following sequence (see

Fig. 6):
� $ � � ��� % $ � % ��� � $ �������

D. Properties of the de-synchronization model

We now discuss several properties of the model. The proofs
of the theorems are presented in the appendix.

Theorem 3.1: Any circuit marked graph is safe.
Proof: See appendix.

1We include these arcs for the sake of clarity of the model. Only in those
cases in which a block has no incoming data, the arc will not be redundant.

B−A+ C+ D−

B+ C− D+A−

(a) (b)

A+

A− B−

B+ C+

C−

D+

D−

Fig. 7. Synchronization of a ring: (a) live model, (b) non-live model.

Although this property is not essential to prove the main
theorem of this section, it is interesting to notice that safeness
intuitively guarantees that no data overwriting will occur.

Theorem 3.2: Any circuit marked graph
��� �	�

�

is live.
Proof: See appendix.

Liveness guarantees something crucial for the model: ab-
sence of deadlocks. This property does not hold automatically
for every “reasonable” model. Figure 7 depicts two different
de-synchronization models for a ring, that can be obtained
by connecting the output of latch

�
with the input of latch# in Fig. 3. Figure 7(a) depicts the non-overlapping model

presented in Section III-A, obtained by adding the arcs
� ���

#�$ and
� $ � # � to the marked graph of Fig. 3.

A different model is presented in Fig. 7(b). In this model,
the events of two adjacent latches, say # and

&
, commit to the

following handshaking protocol: #�$ & $ # � & � #�$ & $ ()()(.
When building the protocol for a ring, the model is not live,
due to the unmarked cycle:

��� & ��� % ��� � ��� # ��(
One can easily understand that after firing events #=$ and

% $,
the system enters a deadlock state. It is also easy to prove that
this model is live for acyclic netlists.

At this point, it is important to emphasize that the de-
synchronization model presented in this paper has self-
resetting pulses, i.e. the only causality arc that precedes an
event 	 � is the corresponding 	1$. This spontaneous “return-
to-zero” guarantees liveness for any netlist, even cyclic.

Theorem 3.3 (Synchronic distance): Let
� �������	�
 �

be a
CMG, # and

&
two blocks such that # transfers data to

&
,

and � a sequence firable from
�0

.

1) If # is even and
&

is odd, then

� � #=$ ��
 � � & $ ��
 � � #=$ � $ 9
2) If # is odd and

&
is even, then

� � & $ ��
 � � #=$ ��
 � � & $ � $ 9
Proof: See appendix.

This theorem states that adjacent latches alternate their pulses
correctly, which is crucial to preserve flow equivalence. We
now present the main result of this paper.

E. Flow equivalence

The de-synchronization model previously presented enables
data to flow across an asynchronous circuit. But is this data
flow equivalent to the behavior of the synchronous circuit?. To
prove this equivalence, we first must define in what kind of

equivalence we are interested. For that, we first present some
preliminary definitions for synchronous circuits.

Definition 3.1 (Synchronous behavior): Given a block #
(combinational logic and latch), we call ��� the logic function
calculated by the combinational logic. We call #�� the value
stored in # ’s latch after the � -th clock cycle. Let us call��� ()((�
	

the predecessor blocks of # .
� If # is odd, then #�� 3 ��� � �����
 � �)()((� �
	��
 � �� If # is even, then #�� 3 ��� � ���� �)()((� �
	� �

where all even blocks store a known initial value at cycle 0.
The behavior of a synchronous circuit can be defined as the

set of traces observable at the latches. If we call � � ()()(� 	
and � � (()(��� the set of even and odd latches, respectively,
the behavior of the circuit can be modeled by an infinite trace
in which each element of the alphabet is an

��� $�� � -tuple of
values:

cycle ����� trace

initial � �
�� ���!� �#"� $ ��%�!�!� $'&�
1 (� �� ���!� � "� $ �� �!�!� $ & �� ���� ���!� �#"� $ �� �!�!� $'&�
2 (� �� ���!� � "� $ �) �!�!� $ &)
...

...
...* (� �+-, � �!�!� � "+�, � $ �+ �!�!� $ &+

� � �+ ���!� � "+ $ �+ �!�!� $ &+*/. ((���+ ���!� �#"+ $ �+10 � ���!� $'&+10 �
In fact, it is enough to observe the behavior in one of the

clock phases (e.g. 24365 3 �) to completely define the behavior
of the circuit.

If we project the trace onto one of the latches, say # , we
obtain a trace #
 # � ()((#7� ()((, i.e. the sequence of values
stored in latch # at each cycle.

We now present the notion of flow-equivalence [12], which
is related to that of synchronous behavior in [5], in terms of
the projection of traces onto the latches of the circuit.

Definition 3.2 (Flow equivalence): Two circuits are flow-
equivalent if

1) They have the same set of latches and
2) For each latch # , the projections of the traces onto # is

the same in both circuits.
Intuitively, two circuits are flow-equivalent if their behavior

cannot be distinguished by observing the sequence of values
stored at each latch. This observation is done individually for
each latch and, thus, the relative order at which values are
stored in different latches can change.

Theorem 3.4: The de-synchronization model preserves
flow-equivalence.

Proof: See appendix.
Theorem 3.4 is the main theoretical result of this paper.

Figure 8 illustrates the notion of flow equivalence. The top
diagram depicts the behavior of a synchronous system by
showing the values stored in two latches, # and

&
, at each

clock cycle. The diagram at the bottom shows a possible de-
synchronization. From the diagram one can deduce that latches# and

&
cannot be adjacent (see Theorem 3.3), since the

synchronic distance of their pulses is sometimes greater than

1 3 0 2 1 5 3 1 6 0

5 1 2 3 1 4 2 4 3 1

A

B

CLK

5 1 2 3 1 4 2 4 3 1B

3 0 2 1 5 6 03 11A

De−synchronized behavior

Synchronous behavior

Fig. 8. Flow equivalence.

1 (e.g.
&

has received 5 pulses after having stored the values8:9 �)9 ��; ��< � 9 !
, while # has only received two pulses storing8 9 �=< !

).

IV. TIMED MODEL

The model presented in Section III guarantees synchronous
equivalence with zero-delay components. However, computa-
tional blocks and latches have delays that impose a set of
timing constraints for the model to be valid.

Figure 9 depicts the timing diagram for the behavior of three
latches in a pipeline. The signals > and � represent the inputs
and outputs of the latches. The signal

<
is the control of the

latch (
< 3:9

for transparent and
< 3

� for opaque).
We will focus our attention to latch # . As soon as �
�

becomes valid, the computation for block
&

starts. Latch
&

can become transparent before the computation completes. Let
us call ?@� the time when the latch is opened in advance with
respect to the completion of the operation (?A� can be negative
when the latch is opened after the completion). Opening a latch
in advance is beneficial for performance, because it eliminates
the time for capturing data from the critical path. However
an early opening might propagate hazards into the next stage
logic, and thus to a power consumption penalty. The best
option is to open latch close to the end of the computation
cycle, when most of the logic has already settled down and
hazards are unlikely.

Once the computation is over, the local clock
<CB

of the
destination latch

&
immediately falls. This is possible because,

unlike flip-flops, modern latches have zero setup time [11].
Assuming that all controllers have similar delays and similar
?@� margins, the following constraint is required for correct
operation.

?@D E ?@F $G?IH ��JLKNM � ?I� � �
�

(1)

Constraint (1) indicates that the cycle time of a local clock
(measured as a delay ?@D between two rising edges of

< �),
must be greater than the delay of the computational block
(? F) plus the latch controller delay (? H) plus the penalty
for opening the latch late, when ? � is negative. The control
overhead in this scheme is reduced to a single delay ? H
because control handshake overlaps with the computation
cycle due to the early rising of the local clock. The constraint
assumes that the depth of combinational logic is sufficiently

CLK
gen

CLK
gen

CLK
gen

�����������
�����������
�����������
�����������

C

TC

TA

TPW

A

LA

O

A

T

CL

L
T

CI

BO

BL

BI

Valid

O

ComputingUnknown value

AL CLBL

BI

I

C

A

���������������
���������������
���������������
���������������

���
���
���
���
���
���

OCI

T

B

T

���������
���������
���������
���������
���������
���������

OAOAI A B C

Fig. 9. Timing constraints for the asynchronous controllers.

large to amortize the overlapping part of the handshake. The
latter is true for ASIC designs, that typically have more than
20 levels of logic between adjacent registers. The example
shown in Section VI is especially bad in this respect, since it
has extremely shallow logic.

Inequality (1) guarantees the satisfaction of set-up con-
straints for the latch. Note that hold constraints in a de-
synchronized circuit are ensured automatically, because the
clock of any predecessor latch rises only after the clock of its
successor latch had fallen. This makes it impossible to have
races between two consecutive data items at latch inputs.

A. Timing compatibility

In Section III we showed that synchronous and de-
sycnhronized circuit are indistinguishable when observing
event sequences at the outputs of corresponding latches. This
section shows that the temporal behaviors of these circuits are
also similar, i.e. the deadlines on computation imposed by a
clock are met in a de-synchronized circuit as well. Based on
these two results (temporal and behavioral equivalence) one
could replace any synchronous circuit by its de-synchronized
counterpart without visible changes. This makes the suggested
design methodology modular and compositional.

In a synchronous flip-flop-based circuit, the cycle time ?
	
is bounded by [11]:

?�	 E ?@F $G?
���������4$G?
������� $?@F�� (2)

where ? F � ?���������� � ?
������� and ?@F�� are maximum combi-
national logic, setup, skew and clock-to-output times respec-
tively.

Comparing inequalities (1) and (2) and bearing in mind
that due to retiming the maximal computation time in a de-
synchronized circuit can only be reduced, one can conclude
that under reasonable timing assumptions the cycle time of
de-synchronized circuit ? D should be smaller than the cycle
time ? 	 of the corresponding synchronous design.

There is a small caveat in the above statement. The notion
of a cycle time is well defined only for a circuit with a
periodic clock. In a de-synchronized system the separation
time between adjacent rising edges of the same local clock
might change during functioning (see Figure 8 e.g.). Therefore
when talking about de-sycnhronized and synchronous systems
one has to relate the perfect periodic behavior of one of them to
a non-periodic one of another, which seems to be problematic.

The following properties provide a basis for relating these
two systems in a sound way. Informally they show that
latches that belong to critical computational paths of a de-
sycnhronized system have well-defined constant cycle time
while the rest of the latches operates in plesiochronous
mode [13], in which their local clocks have transitions nomi-
nally at the same rate, with bounded time offsets.

Property 4.1: If in a de-synchronized circuit the computa-
tion delay ? F is the same for every combinational block, then
the separation time between adjacent rising edges of every
local clock is also the same and equals ? D .

The proof is trivial because a perfectly balanced de-
sycnhronized system behaves like a synchronous one with all
local clocks paced at the same rate.

The observation that the rising transition of the local clock
of any odd latch � -th happens at time

� � � 9
��� ? D immediately
follows from Property 4.1. A similar relationship can be
defined for the clocks of even latches by adding a constant
phase shift ? � � to time stamps

� � � 9
�!� ? D . Without losing
generality of a timing analysis, one can limit the consideration
to one type of latches only (odd e.g.).

Property 4.2: In any de-synchronized circuit the � -th rising
transition of a local clock of odd latch cannot appear later than� � ��9"��� ?@D .

Proof: See appendix.
Let us call a latch critical if the delay of a combinational

block connected to its output is equal to the maximal compu-
tational delay ?@F . From Properties 4.1 and 4.2 follows that the
separation time between any rising edges of clocks for critical
latches is constant and equal to ? D . The synchronic distance
between adjacent latches does not exceed 1 (Theorem 3.3).
Therefore after at most one cycle latches adjacent to a critical
latch must adapt their cycle time to ? D (after one cycle they
are paced by a critical latch). Pushing these arguments further
implies that in a connected de-synchronized system system
any latch sooner of later settles to the cycle time ? D . This
shows that the behavior of a de-synchronized circuit has a
well-defined periodicity, similar to that of a synchronous one,
paced by a common clock.

P1−

P1+

S1−

S1+

S2−

S2+

P2−

P2+

y2+

y2−

P+

L+

y1+

y1−

L−

x1−

x1+ x2+

P−

x2−

Fig. 10. An STG of the implementation of the latch controller (dashed arcs
denote timing constraints).

S

R

S

R

S

R

S

R

S1

Sm

P1

Pn

x1

xn

y1

ym

R

S

Q

+

delay

S

R

Q

Q

Q

Q

Q

P

L

Fig. 11. Implementation of the latch controller.

Embedding of a de-synchronized circuit with clock cycle ? D
into a synchronous environment with a clock cycle ? 	 � ?�	 E
?ID results in the latches at the asynchronous/synchronous
boundary becoming critical, since they are paced by exter-
nal clock ?�	 . This makes de-synchronised and synchronous
systems compatible in terms of timing, because their external
timed behavior is the same.

V. AN IMPLEMENTATION OF THE MODEL

Figure 10 depicts an STG describing a possible implemen-
tation of the latch controller. For simplicity, a block with two
predecessors (

� 9
and
� ;

) and two successors (; 9 and ; ;)
has been considered. The output signal is

<
. The events

� $
and

< $ are separated by a delay greater than the delay of the
combinational block. On the other hand, events

� �
and

< �
determine the pulse width. Therefore,

�
and

<
are separated

by an asymmetric delay (faster falling than rising).
A possible implementation of the behavior is depicted in

Fig. 11.
The dashed arcs represent timing assumptions. The follow-

ing assumptions are required:
� The delay of event � � � is shorter than the delay of

� � � .
This is guaranteed by having a pulse width for

� � longer
than the delay of the gate implementing � � .� A similar assumption is required for � � � with regard to
the pulse width of ; � .� The delay of � � $ is shorter than the delay of ; � $.
This is a realistic assumption, since �/� is implemented

P

L

falling delay

rising delay

Fig. 12. Asymmetric delay.

by one small gate, whereas the delay from
< $ to ;A��$

is determined by the delay of the combinational block
(equivalent to the delay from

� � $ to
< $ in the successor

block).� � � � occurs before
< �

. This is realistic if we assume
that all controllers in the circuit are designed to generate
similar pulse widths.� < � must occur before ; � � . Again, this is realistic if all
pulse widths are similar. In particular, the pulse for

<
starts before the pulse for ; � , since there is a causality
relation

< $ � ; � $.
Finally, the controller can guarantee a correct synchroniza-

tion only if inequality (1) holds. The sequence of events that
determines the corresponding delays is the following:

� + .���� +	� � � .��
delay
 �

�
���
� ��� �� .��

delay � � � �
� ��� ��
�

VI. DE-SYNCHRONIZATION CASE STUDY

We present results on the application of de-synchronization
on a pipelined DES encryption core. We demonstrate that
despite the fact this design contains thin logic between regis-
ters, our approach still manages to hide control overhead and
achieves comparable performance at lower power.

A high-throughput DES core is essentially a 16-stage
pipeline, where each stage implements a single iteration of
the DES algorithm. The algorithm operates on a 64-bit data
stream and 64-bit keys and consists of permutations, shifts and
a limited amount of logic. Thus, the depth of each of these
stages is small.

We first implemented a synchronous, edge-triggered flip-
flop design realising the 16-stage DES design in the 0.18 � m
VST-UMC standard-cell technology library. We have actu-
ally compared our synchronous implementation with available
synchronous Open DES cores (from www.opencores.org) and
verified that it has indeed similar performance. We then
employed the method of de-synchronization in order to derive
a de-synchronized dual-latch design.

As this was a standard-cell library implementation we had
to derive standard-cell realisations of the circuits presented
in Section V. First, we used Petrify to obtain a standard-
cell circuit for our latch controller designs in a given library.
After that we described the circuits in standard-cell Verilog
and from this step onwards we were able to follow a stan-
dard EDA tool flow, i.e. used Synopsys Design Compiler

Sync. Flip-Flop DES De-Sync. Latch DES
Cycle Time 1.60ns 1.66ns
Latency 25.77ns 26.57ns
Power Cons. 328.92 mW 288.78 mW
Area 565542 ���

)
685406 ���

)

TABLE I

SYNCHRONOUS VS. DE-SYNCHRONIZED DES CASE STUDY

Area % Total Area
Async. Control 4292.8 ���

)
0.63%

Delay Elements 4032.64 ���
)

0.59%
Registers 281120 ���

)
41.02%

C.L. 395952 ���
)

57.77%

TABLE II

DE-SYNCHRONIZED DES: AREA BREAKDOWN

for Static Timing Analysis (STA) and (limited amount of)
circuit optimization and NCVerilog for circuit simulation. We
generated asymmetric delay elements as Verilog standard-cells
automatically using a simple Perl script which chained a user-
specified number of gates (in the form shown in Figure 12)
and then performed STA on that delay element in Synopsys
to verify its timing and fine-tune it.

Table I contrasts the characteristics of the two designs. This
data are post-synthesis, pre-layout results based on gate-level
simulations.

The cycle time is the time it takes to perform a single
iteration of the DES algorithm. A total of sixteen iterations
is required to produce the 64-bit result, i.e. the latency
value shown in the table. The power consumption of the
DES designs was measured by performing switching activity
annotation of the circuit during simulation. The area figures
are standard-cell totals. The area of the synchronous version
does not include the area required by its clock tree, however
the area of the asynchronous includes all the necessary buffers
for register latching.

As can be seen by these figures, the de-synchronized design,
despite an area increase of approximately 22%, presents only a
very slight difference in cycle time and a power improvement
of slighly over 12%.

We were able to exploit both the fact that latches present
a smaller propagation delay and also that latches present a
smaller delay from inputs to outputs, than from their enable
signal to outputs. Thus, in order to hide control overhead we
firstly removed the overhead of internal controller delay from
the matched delay elements and also reduced the delay of these
elements so as the enable pulse of the latches to arrive before
their last inputs, thus achieving a faster latch response.

Table II shows the area breakdown of the de-synchronized
DES in terms of asynchronous control, delay elements, regis-
ters and combinational logic. These numbers demonstrate that
logic is thin as stated earlier. In fact most of the area overhead
comes from using two latches instead of a single flip-flop,

The register area of the asynchronous design is approximately
218560.

These results demonstrate the potential of this approach
even on a simple pipelined design with thin logic. We be-
lieve that further experiments will demonstrate that the de-
synchronization of more complex datapaths will be able to
exhibit more significant power and potentially better perfor-
mance than that of synchronous counterparts.

VII. CONCLUSIONS

This paper presented a de-synchronization model that can
be used to automatically substitute the clock network of a
synchronous circuit by a set of asynchronous controllers.
This results in power and EMI improvements, shortens the
design cycle, and can allow one to measure more easily the
performance of each manufactured circuit.

We believe that these techniques, while not providing all the
advantages that asynchronous circuits promise, are a signifi-
cant step toward spreading the use of asynchronous circuits
among mainstream designers.

REFERENCES

[1] S. B. Furber, J. D. Garside, and D. A. Gilbert, “AMULET3: A high-
performance self-timed ARM microprocessor,” in Proc. International
Conf. Computer Design (ICCD), Oct. 1998.

[2] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and F. Schalij, “The
VLSI-programming language Tangram and its translation into handshake
circuits,” in Proc. European Conference on Design Automation (EDAC),
1991, pp. 384–389.

[3] A. Bardsley and D. Edwards, “Compiling the language Balsa to delay-
insensitive hardware,” in Hardware Description Languages and their
Applications (CHDL), C. D. Kloos and E. Cerny, Eds., Apr. 1997, pp.
89–91.

[4] I. Blunno and L. Lavagno, “Automated synthesis of micro-pipelines
from behavioral Verilog HDL,” in Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems. IEEE
Computer Society Press, Apr. 2000, pp. 84–92.

[5] D. H. Linder and J. C. Harden, “Phased logic: Supporting the syn-
chronous design paradigm with delay-insensitive circuitry,” IEEE Trans-
actions on Computers, vol. 45, no. 9, pp. 1031–1044, Sept. 1996.

[6] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asyn-
chronous design using commercial HDL synthesis tools,” in Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits
and Systems. IEEE Computer Society Press, Apr. 2000, pp. 114–125.

[7] V. Varshavsky, V. Marakhovsky, and T.-A. Chu, “Logical timing (global
synchronization of asynchronous arrays,” in The First International Sym-
posium on Parallel Algorithm/Architecture Synthesis, Aizu-Wakamatsu,
Japan, Mar. 1995, pp. 130–138.

[8] R. Kol and R. Ginosar, “A doubly-latched asynchronous pipeline,” in
Proc. International Conf. Computer Design (ICCD), Oct. 1996, pp. 706–
711.

[9] T. Murata, “Petri Nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, pp. 541–580, Apr. 1989.

[10] F. Commoner, A. W. Holt, S. Even, and A. Pnueli, “Marked directed
graphs,” Journal of Computer and System Sciences, vol. 5, pp. 511–523,
1971.

[11] D. Chinnery and K. Keutzer, “Reducing the timing overhead,” in Closing
the Gap between ASIC and Custom: Tools and Techniques for High-
Performance ASIC design. Kluwer Academic Publishers, 2002, ch. 3.

[12] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann, “Polychrony for system
design,” Journal of Circuits, Systems and Computers, Apr. 2003.

[13] L. Dennison, W. Dally, and T. Xanthopoulos, “Low-latency ple-
siochronous data retiming,” in Advanced Research in VLSI, 1995, pp.
304–315.

[14] C. D. Nielsen and M. Kishinevsky, “Performance analysis based on
timing simulation,” in Proc. ACM/IEEE Design Automation Conference,
June 1994, pp. 70–76.

Note: this appendix is only included for completeness, so
that the reviewers can checked the proofs of the main
theorems of the paper. It will not be included in the final
version of the manuscript

APPENDIX

Proof of Theorem 3.1

According to Theorem 2.3, it is enough to prove that every
arc belongs to a directed circuit

%
with

�
 � % ��3 9
. In any

CMG we have four types of arcs, denoted by . � � .�� in Fig. 5.
Arcs . � and .�� are a circuit with exactly one token on . � .
Assume that # and

&
are the source and target blocks for

arcs .�� and . � (see Fig. 5). Both arcs belong to a directed
circuit with one token (#�$ � & $ � & � � #�$) in which
either .�� or . � will be marked, depending on whether # is
even or odd, respectively. Therefore all arcs of a CMG belong
to a directed circuit with exactly one token.

Proof of Theorem 3.2

By Theorem 2.1 it is enough to prove that there is no
directed circuit in the CMG without any token. For that, we
will try to build an unmarked directed circuit and we will show
that it is not possible. Since all arcs of type . � are marked in�6

, we can ignore them. If we try to build a circuit that starts
with an arc of type .�� , we will find the following possibilities,
all of them ending up by crossing a marked arc (� and �
represent signals of an even and odd block, respectively, and
the � denotes a marked arc).��� � � $ �
	��� � � � ������ � $��
 � � $ � 	� � � � � �� � � $ � �
���� � $� 2 � � $ � 	� � � � � �� � � $ � 	��� � � � � �� � � $
If we try to build a circuit that starts with an arc � � � �� � � $,
we will end up by exploring the cases (b) and (c). Finally, if
we try to build a circuit that starts with anr arc of type . � , we
have the following cases:���7� � $ � �� � � $ � � ���� � $� . � � $ �
�� � � $ � 	��� � ��� � � �� � � $
thus always crossing an arc with a token. Hence, we conclude
there is no directed circuit without any token.

Proof of Theorem 3.3

In case # is even and
&

is odd, the circuit #=$ �� & $ �& ��� #�$ guarantees that these three events alternate in this
order and, therefore, the inequality holds.

In case # is odd and
&

is even, the alternation is guaranteed
by the same circuit, but initially marked on

& � �� #�$.

Proof of Theorem 3.4

Let us call
��� (()(�
	

the predecessor latches of # . The
proof will be done by induction on the length of the trace.
Induction hypothesis: For any latch # , flow-equivalence is
preserved for the first � � 9 occurrences of #�$ and until a
marking is reached with the � -th occurrence of #=$ enabled
(see Fig. 13(a)). The marking of the arcs

� � $ ��� � � � ���

P1+

P1−

Pn−

Pn+

A+

A−

P1+

P1−

Pn−

Pn+

A+

A−

(a) (b)

Fig. 13. Illustration of Theorem 3.4.

� � $ is irrelevant for the hypothesis.
Basis: The induction hypothesis immediately holds for odd
latches in the initial state. For even latches (see Fig. 13(b)),
it holds after having fired

� � $ ()((�
	 $ once from the initial
state. This single firing preserves flow-equivalence since each
latch
� � receives the value

� �� 3 ����� ��� �
 �)(()(��� �
 �
obtained from the initial value of

� � � ()()(��� � (the predeces-
sor latches of

� �).
Induction step (case # odd). Since the � -th firing of #=$ is
enabled we know that each

� � $ transition has fired � � 9 times
(see Theorem 3.3) and, by the induction hypothesis, stores the
value

� ��
 � . Therefore, the next firing of #=$ will store the
value

� 3 � � � � ���
 � � ()()(� � 	�
 � �
which preserves flow-equivalence. Moreover, the � -th firing
of
� � $ will occur after # has been closed, since the arc# � � � � $ forces that ordering. This guarantees that no

data overwriting will occur on latch # . Finally, the controller
will move towards the marking with tokens in

� � $ � #�$
without opening the latch, thus reaching the same conditions
of the induction hypothesis, but now for cycle � .
Induction step (case # even). Since #�$ has fired � �19 times,
then
� � $ has fired � times, according to Theorem 3.3. Since

the
� � latches are odd, they store the values

� �� , by the
induction hypothesis and the previous induction step for odd
latches. The proof now is reduced to case of # being even, in
which:

#7� 3 ��� � � �� � ()((� � 	� �
This concludes the proof, since induction guarantees flow-
equivalence for any latch # and for any number firings of
#�$.

Proof of Property 4.2

Estimation of the firing time of � -th instance #
� of event# in a marked graph
�

is reduced to the following proce-
dure [14]:

1) Annotate each edge of a graph with the corresponding
delay.

2) Construct an unfolding of a graph.

3) Find the longest path from a set of events enabled
initially (fireable at time �

3
�) to #�� .

From Property 4.1 follows that for a well-balanced de-
synchronized circuit the length of the longest path to the � -th
rising event at any odd latch is

� � � 9
��� ? D . For an arbitrary
circuit the weight of edges in

�
could only be reduced from

their worst case values. This immediately implies that none
of the odd latches could have � -th rising transition happening
later than

� � ��9"��� ?@D .

