SIS - Application Programmatic
Interface
Reference Manual

Version 2.2.2

Institute of Computer Science

Foundation for Research and Technology - Hellas

SIS-Application Programmatic Interface, Reference Manual

TABLE OF CONTENTS

1 INTRODUCTION

2 QUERYING MODELS

2.1 Client-server model to access the SIS base

2.2 Immediate access the SIS base

3 FUNCTIONALITY OF THE QUERY AND UPDATE FUNCTIONS

4 NAME STACK

5 PROGRAMMATIC SCENARIO

6 FUNCTIONS

6.1 Query and transaction sessions
6.1.1 Creating sessions to interact with a SIS data base
6.1.2 Connecting to the database
6.1.3 Performing queries and transactions
6.1.4 Using the locking mechanism

6.2 Set global parameters

6.3 Queries
6.3.1 Low level queries
6.3.2 Simple queries
6.3.3 Logical expressions - Object set filtering
6.3.3.1 Expressions returning TRUE/FALSE

6.3.3.2 Expressions returning an integer value
6.3.33 Expressions returning a system identifier
6.3.3.4 Expressions returning a set identifier

6.3.3.5 An Example

6.3.4 General recursive queries

6.3.5 Conditions on recursive queries
6.3.5.1 An Example

6.3.6 Special recursive queries

6.3.7 Pattern Matching queries
6.3.7.1 An Example

6.4 Set manipulation functions

6.5 Read contents of answer sets
6.5.1 Parametric projection

6.6 Tuple handling functions
6.7 Update Functions

6.7.1 Addition Operations
6.7.2 Delete Operations

August 2002/v2.2.2 -3-

10
10
11

11

12
12
13
18
19
24
24
24
27
27
28
28
29
30
31

31

33
36

36
37

38
39

ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

6.7.3 Modification Operations

6.8 Miscalaneous utility structures and functions
6.8.1 Utility structures
6.8.1.1 struct IDENTIFIER
6.8.1.2 struct cm_value
6.8.1.3 struct category_set
6.8.2 Memory management

APPENDIX A — C-API FUNCTION DECLARATION

APPENDIX B - AN EXAMPLE

APPENDIX C - CHANGES FROM PREVIOUS VERSIONS

APPENDIX D - C++ PROGRAMMATIC INTERFACE

APPENDIX E - JAVA PROGRAMMATIC INTERFACE

APPENDIX F — DESCRIBING IN XML

APPENDIX G - BACKWARDS COMPATIBILITY

INDEX

August 2002/v2.2.2 4-

39

40
41
41
41
41
42

43

49

55

57

61

64

65

66

ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

1 Introduction

The Application Programmatic Interface (API) designed and implemented in ICS-
FORTH offers a complete set of primitive query and update operators, which
implement frequently used combinations of primitive operations on the server side for
optimization. Stress was laid especially to traversal operations.

In this document we present the set of functions the API consists of, the functionality
of the supported queries and at the end a complete example is presented: A TELOS
model and description is shown and also the source code of an application which
queries according to the model.

API libraries are available in PC versions in C++ and C (Borland 5.01 libraries and
dll) and in Java'. In this document we present the C version of the SIS programmatic
interface. The differences between C interface and the C++ and Java interfaces are
presented in “Appendix D - C++ Programmatic Interface” and “Appendix E - Java
Programmatic Interface”.

2 Querying models

An application which wants to retrieve and/or modify information from a data base
created with the TELOS language can use an application programmatic interface
offering a collection of primitive access and update functions rather than
accessing/updating the data of the base with primitive reads/writes from the files.
This would require knowledge of how the objects are stored into the base something
that is not required with the application programmatic interface (hereafter called API).

There are two implementations of the API, fully compatible one to the other, meaning
that an application which uses the API can be compiled with any of the two libraries
which implement the same functions with the same functionality but with a difference
described below (see figure 1).

' There were also available in UNIX platforms (e.g. Solaris, AIX, etc.) but due to luck of market
interest the porting to the platforms above was abandoned.

August 2002/v2.2.2 -5- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

< Application >
begin_gueryl]
reaget_guery(l
518 SERAVER get_current_nods ()

get_ ool

L: currknih node :
|:||:||:||:| _return »oonooex ()
Name Shach Condilinng :
end ery ()
[T17T - T1T101 O e e
Cakgories dirktions Depih applitalien greg rammalic inkéfa it

I:‘ l:' I:‘ .. l:' I:' machet Client part of the
communimtisn § .
2 N slgesel Frogrammatic Inteiface

3
Aiiw b S Bk Connmnication routines

GLIENTARFLIGATION
Ob'ect storage, retrieval,

caching mechanism

=

Figure 1: The query model

SIS server is a process running independently and serving a client application. The
client-server communication is achieved through sockets. The client application is
linked only with the client part of API which simply sends the query /update request
to the server where the query /update processing is done.

2.1 Client-server model to access the SIS base

With the first implementation of the API the application is the client of a client-server
model of querying and/or modifying the SIS base. This means that a second process
(the SIS server) has to run in parallel to the application and this process gives the
answers to any question from the application, and modifies the data in the SIS base.
The server is responsible for reading and writing the SIS base files.

The main advantage of this model is that the client (or clients) need not run on the
same machine the SIS server is running. The communication between the client
process and the server process is achieved through Windows sockets.

2.2 Immediate access the SIS base

With the other implementation of the API the application does not communicate with
some other process to retrieve the information but the query and update functions
themselves access the data from the SIS base. This implementation eliminates the
delay on the socket communication but creates a bigger process both in disk demands
(executable file) and in run-time memory requirements since the process itself reads
the whole SIS base.

August 2002/v2.2.2 -6- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

3 Functionality of the query and update
functions

The answer to most of the queries on an object is a set of objects, that is the query for
the instances of an object A is a set of all the objects that are instances of object A, the
query for the superclasses of an object B is a set of all the objects that are superclasses
of object B etc. So, for most queries, there is an object that the query applies on and
an answer set, the result of the query.

In order to avoid long traffic through the sockets, those functions, which should return
a set of answers, operate like this: When called, they calculate the answer and locate it
into an answer set. The return value is ApIFail(-1) if the query failed or a positive
integer on success. This positive integer is the identifier of the answer set (hereafter
will also be called temporary set). Most of these queries take as argument an integer,
which specifies the object where the query is going to apply on. If this argument is 0
the query is applied on the current node otherwise it is applied on each object in the
answer set with identifier the one passed as argument.

Before calling a query function asking to apply on the current node, an object must be
set as current node with the set_current_node() or set_current_node_id() function.

With the use of temporary set at the server site, the client doesn't get the answer
immediately but only when this is asked explicitly with some other function. This
gives the possibility for the querying functions to apply on to the objects that exist
into a temporary set. The answer is calculated by the server and then located into
another temporary set and the identifier of this new set is returned. With this
possibility the client doesn't have to get intermediate results, which can reside at the
server site for further processing.

4 Name stack

At the beginning of a query session there is no current node. Before calling any
querying function, a current node must have been set.

In TELOS language, links are objects themselves and may have their own links, so
there is the possibility to set as current node a link object but since the logical names
of the attributes of a class are unique for the class but not for the whole SIS base (two
different classes may have attributes with the same logical name) there is a name
scope problem with the set_current_node() function.

For this reason an object stack is maintained. At the beginning of a query the stack is
empty. When the stack is empty the call of set_current_node() function must have as
argument the logical name of a node object (the name scope is the whole SIS base)
and then this object is pushed onto the stack (at the top). Any subsequent call of
set_current node() function has as name scope the current node, that is the object at
the top of stack. So it has to have as argument the logical name of a link of the current
node and this link object is pushed onto the stack.

With this mechanism the stack is either empty or contains objects where the first (at
the bottom) is a class object and the others are link objects and each of them is
attribute of the object located one level below on the stack.

August 2002/v2.2.2 -7- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

There are functions (described later) for manipulation of this stack and what is
important to remember is that when we want to set as a current node another class we
have to empty the stack first.

The set_current_node_id() function takes as argument an integer and sets as current
node the object with system identifier the given integer. The set_current _node_id()
function resets the name stack and if the new object is link, the name stack contains
the start node object and the subsequent link objects till the new current node, as if
set_current node() had been used.

5 Programmatic scenario

An application that uses the API to query the SIS database should, in general terms do

the following:

1. Create a session to connect with the SIS database with create SIS CS_Session()
function.

2. Establish the connection with the SIS database with open_connection() function.

3. Start a query or a transaction session to access or modify the SIS data with
begin_query() and begin_transaction() functions.

4. Set a current node with the set_current_node() function.

5. Use a set of query/update functions (described bellow), which retrieve information
and collect the answer into temporary sets at the server-site or modify information.

6. Repeat steps 4 and 5 and optionally performs some set operations (described
bellow) on the temporary sets.

7. Terminate the query or the transaction session with end_query() or

end_transaction() functions.
. Terminate connection with the server with the close_connection() function.
9. Release the session with release_SIS_Session() function.

o0

6 Functions

Here follows the list of functions that constitute the APIL. In “Appendix A — C-API
function declaration” there is a list of the definitions of all these functions as well as
the definitions of the data types that appear in their argument list. The functions can
be categorized according to their functionality.

6.1 Query and transaction sessions

These functions are used to determine the SIS database to connect with, and initialize
the API global structures. They also establish the connection with the SIS database
and start a query or a transaction session to access or modify the SIS data.

The functions return APISucc(0) on success and APIFail(-1) on error (except if
stated otherwise).

If the application is linked with the second implementation of API (direct access to
the SIS database) some of these functions are not useful but are supported for full
compatibility with the first implementation (client-server model).

August 2002/v2.2.2 -8- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

6.1.1 Creating sessions to interact with a SIS data base

In order to provide real multi-threading to the clients that were using the SIS C-API,
we introduced the notion of sessions. The application developer that needs to provide
multi-thread access to different servers or the same server (making simultaneous
queries or updates) should create multiple sessions to implement this.

The following functions are responsible for selecting the SIS database to establish a
communication with. The hostname of the query server is needed along with a port
number.

NOTE: In the following sections all functions described take as first argument the
sessionlD of the session (access point to the database) that they are quering or
updating.

int create SIS CS Session(int *sessionlD, char *serv_host, int serv_port, char
*DBUserName, char *DBUserPassword)

Creates a session and sets the hostname and the port that this querying session
will interact with. The variable sessionID will contain new session id. If this
function is not called, any other call to some other function of the API will
fail. The DBUserName and DBUserPassword will be used in the future to
validate the requested connection. Currently they are not used but the should
not be NULL.

In case the application is linked with the second implementation of API (direct access
to the SIS database) the following functions are used. Note that, in this case, only one
session should be created.

void get db_dir(char **db_dir)

This utility function reads the environment variable DB_DIR into the string
db_dir. The space for the db_dir string is expected to be already allocated. In
case of failure forces the application to exit.

int *init_start telos(char *db_dir, int write_permission)

Creates an access link to the SIS database. It returns the pointer start_t (access
link to the SIS database). This link should be used us argument to
create_SIS SA Session() function. Write permission is an optional argument
that enables the write access (1) or the read-only access (0) to the SIS
database. If it is missing the read-only access is established. In case of failure
it returns NULL.

int create SIS SA Session(int *sessionID, int *start t, char *serv_host, int
serv_port, char *DBUserName, char *DBUserPassword)

Creates a session using the argument start ¢ as an access link to the SIS
database. The variable sessionID will contain new session id. If this function
is not called, any other call to some other function of the API will fail. The
hostname and the port (serv_host, serv_port) are used to get lock permission
from the query server. Note that a query server should be activated in order to
provide locking to the database. The DBUserName and DBUserPassword will

August 2002/v2.2.2 -9- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

be used in the future to validate the requested connection. Currently they are
not used but the should not be NULL.

int release_ SIS Session(int sessionID)

This function should be called to release the session (sessionID) created by
create_ SIS CS Session() or create_ SIS SA Session().

6.1.2 Connecting to the database

int open_connection(int sessionlD)

This function is used to open a connection to the SIS server determined by
create_ SIS CS_Session or create SIS SA Session function. With the first
implementation described, this function opens the communication socket that
establishes the communication with the server. With the second
implementation this function just returns successfully. Between an
open_connection() and a close_connection() any number of calls to
begin_query()/end_query() and begin_transaction/end_transaction() can
be performed.

int close_connection (int sessionlD)

This function is used to close a connection to a server, previously opened with
open_connection(). With the first implementation described this function
closes the communication sockets, that is it terminates the communication
with the server. With the second implementation this function just returns
successfully.

6.1.3 Performing queries and transactions
int begin_query(int sessionlD)

Starts a querying session. During this session all API query functions can be

called to retrieve information from the SIS base. Possible return values are:
APIFail(-1), API DB_CHANGED(0), API DB _NOT CHANGED(1),
API HASH TABLES NEED EXPANSION(4), APT HASH TABLES EXPANDING (8).

int end_query(int sessionlD)
Ends a querying session.
int begin_transaction(int sessioniD)

Starts a transaction session. During this session API query and update
functions may be called to retrieve and modify information from the SIS base.
The system will not permit operations that will leave the database inconsistent.

Possible return values are: APIFail(-1), API DB_CHANGED(0),
API DB NOT CHANGED(1), API HASH TABLES NEED EXPANSION(4),
API HASH TABLES EXPANDING (8).

int end_transaction(int sessionlD)

Ends a transaction session by committing the changes to the database files. It
returns 1 on success, APIFail(-1) on failure. In case of failure the operations

August 2002/v2.2.2 -10- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

that took place between a begin_transaction() and an end_transaction() have
not been committed.

int abort_transaction(int sessionlD)

Aborts a transaction session. It returns 1 on success, APIFail(-1) on failure. In
case of failure the operations that took place between a begin_transaction()
and an abort_transaction() have not been committed.

6.1.4 Using the locking mechanism

int get_writelock(int sessionID)

Gets writelock on the database. It returns aPIFail on failure,
apr DB CHANGED if the database is changed since last update,
API DB NOT CHANGED if database has not changed.

int get_readlock(int sessionID)

Gets readlock on the database. It returns ApIFail on failure, APT DB CHANGED
if the database is changed since last update, ApT DB NOT CHANGED if database
has not changed.

int release_lock(int sessionID)

Releases the lock got on the database with functions get writelock() or
get readlock(). It returns aApirFail on failure, ApI DB CHANGED if the
database is changed since last update, ApT DB NOT CHANGED if database has
not changed.

6.2 Setglobal parameters

There is a set of functions that set or alter values to global parameters that effect or
are used by the query functions. Such parameters are the current node where a query
function may apply on, the link categories that recursive queries use for traversing
link etc.

Most of the functions return APIFail(-1) on error and APISucc(0) on success,
except the ones that set the current node, which return the system identifier of the
new current node that has been set.

int reset_query(int sessionlD)

Reset all variables at server site so that everything is at the state they are when
starting a new query session. Pop everything out of the name stack and free all
temporary sets.

int set_current_node(int sessionID, [_name node)

Set current node the object with logical name node. If the name scope is the
whole SIS base (default at the beginning of a query session or result of
reset name_scope() call) the argument must be the name of a node object
otherwise it must be the logical name of a link object pointing from the current
node. The function returns the system id of the current node or APTFail(-1) on
failure.

August 2002/v2.2.2 -11- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

int set_current_node_id(int sessionlD, int nodeid)

Set current node the object with system identifier nodeid. This object is now at
the top of the name stack and if it is a link object the name stack is changed
properly (see section 4 where name stack is described).

int reset_ name_scope(int sessionlD)

Set current name scope the whole SIS base. The next set_current_node() will
refer to a class node.

int pop_name_scope(int sessionlD)

Go one level below the current name scope. Useful when you have set for
example as current node an attribute of some class and want to refer to (set
current node) another attribute of the same class.

int set_categories(int sessionlD, categories set categs)

Set the categories for any subsequent call of some special recursive query.
Whenever this function is called, any previous set of categories is deleted. The
data type used for defining the categories is described in section 6.8.1.

int set_depth(int sessionlD, int depth)

Set the depth the recursive queries are going to traverse links, starting from a
node object. If depth is a negative integer recursive queries traverse links with
no limit to depth.

6.3 Queries

Here follows the set of functions that query the SIS data base and calculate and
answer. The first group consists of very simple queries that give the system identifier
of an object if we know the logical name and vice versa. The other two groups consist
of functions that apply on the current node or on each object in a temporary set,
calculate an answer and put it into a new temporary set.

6.3.1 Low level queries

These functions return APISucc(0) on success and APIFail(-1) on error.

int get_classid(int sessionID, | name I[name, int *sysid)

Given the logical name /name of a node object, the function returns the system
identifier sysid of this object.

int get_linkid(int sessionID, |_name fromcls, | name label, int *sysid)

Given the logical name label of a link object, the function returns the system
identifier sysid of this object. Since the logical name of a link object may not
be unique in the SIS base, the logical name fromcls of the node object the link
is pointing from must be given.

August 2002/v2.2.2 -12- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int get_loginam(int sessionlD, int sysid, | name [name)

Given the system identifier sysid of an object, the function returns the logical
name /name of this object.

6.3.2 Simple queries

The following group of queries applies either on the current node or on each object in
a temporary set and store the answer in a temporary set. These queries calculate the
answer set with information that exists in the object they apply on or in objects that
are connected with immediate links with the applying object except some queries that
have to calculate the isA closure of an object.

These functions return ApTFail(-1) on error or the set identifier of the temporary
set where the answer is stored.

int get_classes(int sessionlD, int set _id)

If set_id is 0, get classes of which the current node is instance of. The return
value is the descriptor of the answer set that contains the objects (system
identifiers) of the classes of the current node.

If set_id is a positive integer, apply get classes() on each object in temporary
set set_id.

int get_all classes(int sessionlD, int set_id)

If set id is 0, get classes of the ISA transitive closure of the classes of which
the current node is instance of. The answer set contains the system identifiers
of these classes.

If set id is a positive integer, apply get all classes() on each object in
temporary set set_id.

int get_Sysclass(int sessionlID, int set _id)

If set_id i1s 0, get system class the current node is instance of. The answer set
contains the system identifiers of these objects.

If set id is a positive integer, apply get Sysclass() on each object in
temporary set set_id.

int get_all_Sysclasses(int sessionlD, int set id)

If set id is 0, get all system classes of which the current node is instance of.
The answer set contains the system identifiers of these objects.

If set id is a positive integer, apply get_all_Sysclass() on each object in
temporary set set_id.

int get_instances(int sessionlD, int set _id)

If set_id is 0, get the instances of the current node. The answer set contains the
system identifiers of these objects.

If set id is a positive integer, apply get instances() on each object in
temporary set set id.

August 2002/v2.2.2 -13- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

int get_all_instances(int sessionlD, int set _id)

If set_id is 0, get all the instances of the current node calculating the instances
of all subclasses. The answer set contains the system identifiers of these
objects.

If set id is a positive integer, apply get all instances() on each object in
temporary set set_id.

int get_class_attr(int sessionlD, int set_id)

If set_id is 0, get the class attributes that are instances of the current category.
The answer set contains the system identifiers of these links.

If set id is a positive integer, apply get iclass attr() on each category in
temporary set set_id.

int get_all_class_attr(int sessionlD, int set_id)

If set id is 0, get all the class attributes that are instances of the current
category calculating the instances of all subclasses. The answer set contains
the system identifiers of these links.

If set _id is a positive integer, apply get all class_attr() on each category in
temporary set set id.

int get_superclasses(int sessionlD, int set_id)

If set_id is 0, get the classes that the current code is isSA of. The answer set
contains the system identifiers of these objects.

If set id is a positive integer, apply get superclasses() on each object in
temporary set set_id.

int get_all_superclasses(int sessionID, int set id)

If set_id is 0, get the classes of the isA transitive closure of the classes the
current no'de is isA of. The answer set contains the system identifiers of these
objects.

If set_id is a positive integer, apply get all superclasses() on each object in
temporary set set_id.

int get_all_Syssuperclasses(int sessionlD, int set_id)

If set id is 0, get the system classes of which the current node is isA of. The
answer set contains the system identifiers of these objects.

If set _id is a positive integer, apply get_all_Syssuperclasses() on each object
in temporary set set_id.

int get_subclasses(int sessionlD, int set id)

If set_id is 0, get the classes which are isA of the current node. The answer set
contains the system identifiers of these objects.

If set id is a positive integer, apply get subclasses() on each object in
temporary set set_id.

August 2002/v2.2.2 -14- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int get_all_subclasses(int sessionlD, int set_id)

If set_id is 0, get the classes of the subclass-transitive closure of the classes
that are i1sA of the current node. The answer set contains the system identifiers
of these objects.

If set _id is a positive integer, apply get all subclasses() on each object in
temporary set set id.

int get_link from(int sessionlD, int set_id)

If set_id is 0, get the links pointing from the current node. The answer set
contains the system identifiers of these links.

If set id is a positive integer, apply get link from() on each object in
temporary set set_id.

int get_class_attr_from(int sessionlD, int set_id)

If set id 1s 0, get the class attributes pointing from the current node. The
answer set contains the system identifiers of these links.

If set_id is a positive integer, apply get class_attr from() on each object in
temporary set set_id.

int get _inher link from(int sessionlD, int set id)

If set id is 0, get the links pointing from the current node and the links
inherited from all superclasses or current node.

If set id is a positive integer, apply get inher_link from() on each object in
temporary set set_id.

int get inher_link_to(int sessionlD, int set id)

If set _id is 0, get the links pointing to the current node and the links inherited
from all superclasses or current node and pointing to them.

If set id is a positive integer, apply get inher_link to() on each object in
temporary set set id.

int get inher class_attr(int sessionID, int set id)

If set_id is 0, get the class attributes pointing from the current node and the
class attributes inherited from all superclasses or current node.

If set id is a positive integer, apply get inher_class_attr() on each object in
temporary set set_id.

int get link_to(int sessionID, int set_id)

If set id is 0, get the links pointing to the current node. The answer set
contains the system identifiers of these links.

If set_id is a positive integer, apply get link_to() on each object in temporary
set set id.

int get category from(int sessionlD, int set id)

August 2002/v2.2.2 -15- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

If set_id is 0, get the categories of the links pointing from the current node.
The answer set contains the system identifiers of the classes of the links
pointing from the current node.

If set_id is a positive integer, apply get category from() on each object in
temporary set set_id.

int get category_to(int sessionlD, int set id)

If set_id is 0, get the categories of the links pointing to the current node. The
answer set contains the system identifiers of the classes of the links pointing to
the current node.

If set id is a positive integer, apply get category to() on each object in
temporary set set_id.

int get link from_ by category(int sessionID, int set_id, | name fromcls, | name
categ)

If set_id is 0, get the links pointing from the current node and are instances of
the category given. The category is defined by the name of the link and the
class of which it is pointing from. The answer set contains the system
identifiers of these links.

If set id is a positive integer, apply get link from_ by category() on each
object in temporary set set_id.

int get link from_by meta_category(int sessionID, int set id, | name fromcls,
| _name categ)

If set_id is 0, get the links pointing from the current node and are instances of
some links class that is instance of the category given. The meta-category is
defined by the name of the link and the class of which it is pointing from. The
answer set contains the system identifiers of these links.

If set_id is a positive integer, apply get link from_by meta category() on
each object in temporary set set_id.

int get link to by category(int sessionlD, int set id, | name fromcls, | name
categ)

If set_id 1s 0, get the links pointing to the current node and are instances of the
category given. The category is defined by the name of the link and the class
of which it is pointing from. The answer set contains the system identifiers of
these links.

If set_id is a positive integer, apply get_link to by category() on each object
in temporary set set_id.

int get_link _to_by meta_category(int sessionID, int set id, | name fromcls,
| name categ)

If set_id 1s 0, get the links pointing to the current node and are instances of
some links class that is instance of the category given. The meta-category is
defined by the name of the link and the class of which it is pointing from. The
answer set contains the system identifiers of these links.

August 2002/v2.2.2 -16- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

If set_id is a positive integer, apply get link to by meta_category() on each
object in temporary set set_id.

int get category of link from(int sessionlD, int set_id, | name label)

If set_id is 0, get category of the label given. The answer set contains the
system identifiers of the links which the given label is instance of.

If set id is a positive integer, apply get_category_of link from() on each
object in temporary set set_id.

int get to_node(int sessionlD, int set id)

If set id is 0, get all objects that are connected to the current node by links
pointing to them. The answer set contains the system identifiers of these
objects.

If set id is a positive integer, apply get to_node() on each object in
temporary set set_id.

int get from_node(int sessionlD, int set_id)

If set id is 0, get all objects that are connected to the current node by links
pointing from them. The answer set contains the system identifiers of these
objects.

If set id is a positive integer, apply get from node() on each object in
temporary set set_id.

int get to _node by category(int sessionlD, int set id, | name fromcls, | name
categ)

If set_id is 0, get all objects that are connected to the current node by links
pointing to them. Links must be instances of the category given. The category
is defined by the name of the link and the class of which it is pointing from.
The answer set contains the system identifiers of these objects.

If set id is a positive integer, apply get to node by category() on each
object in temporary set set_id.

int get from_node by category(int sessionID, int set_id, | name fromcls, | name
categ)

If set_id is 0, get all objects that are connected to the current node by links
pointing from them. Links must be instances of the category given. The
category is defined by the name of the link and the class of which it is pointing
from. The answer set contains the system identifiers of these objects. In the
case of class attributes the returned objects are the computed instance set.

If set _id is a positive integer, apply get from_node_ by category() on each
object in temporary set set_id.

int get to node by meta category(int sessionlD, int set id, | name fromcls,
[name categ)

If set id is 0, get all objects that are connected to the current node by links
pointing to them. Links must be instances of some link class that is instance of

August 2002/v2.2.2 -17- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

the category given. The meta-category is defined by the name of the link and
the class of which it is pointing from. The answer set contains the system
identifiers of these objects.

If set id is a positive integer, apply get to_node by meta_category() on
each object in temporary set set id.

int get from _node by meta category(int sessionlD, int set id, | name fromcls,
[name categ)

If set id is 0, get all objects that are connected to the current node by links
pointing from them. Links must be instances of some link class that is instance
of the category given. The meta-category is defined by the name of the link
and the class of which it is pointing from. The answer set contains the system
identifiers of these objects.

If set id is a positive integer, apply get from_node_by meta_category() on
each object in temporary set set_id.

int get from_value(int sessionlD, int set id)

Get the objects that the link objects in temporary set set_id are pointing from.
The answer set contains the system identifiers of these objects.

If set id is 0, apply get from_value() on current node.
int get to_value(int sessionlD, int set_id)

Get the objects that the link objects in temporary set set id are pointing to.
The answer set contains the system identifiers of these objects, or/and
primitive values.

If set id is 0, apply get_to_value() on current node.

6.3.3 Logical expressions - Object set filtering

There are cases that you want to select some objects according to some condition. For
this reason API offers the following function:

int get_filtered(int sessionlD, int set_id)

From all objects in the set set id select only those object that satisfy a
condition that has been previously defined with the set_filter_cond() function,
described later. The answer set contains all these selected objects.

If set id is 0, evaluate the condition for the current node and if it is true put
current node in answer set else return an empty set. The function returns
APIFail(-1) on error or the set identifier of the temporary set where the answer
is stored.

The condition used by get filtered() function can be defined with the following
function:

int set_filter cond(log exp)

Define a logical expression that can be true of false for a specific object.

August 2002/v2.2.2 -18- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

The way to construct logical expressions is described in the following sections.

6.3.3.1 Expressions returning TRUE/FALSE

The argument to the above functions is an API logical expression function that returns
true of false. Such functions are the following:

int SUCC(sessionlID)

Always succeeds (TRUE).
int FAIL(sessionID)

Always fails (FALSE).
int AND(sessionlID, log expl, log exp2)

Logical AND between logical expressions log expl and log exp?.
int OR(sessionID, log expl, log exp2)

Logical OR between logical expressions log expl and log exp?2.
int NOT (sessionlD, log exp)

Logical NOT of logical expression log exp.
int BELONGS(sessionlD, sys_id_expr, set_id_exp)

Returns TRUE if object described by sys id expr (Section 6.3.3.1) belongs in
set described by set_id exp (Section 6.3.3.4) else returns FALSE.

int EQ(sessionID, int val exprl, int val exp2)

Mathematic comparison between integer expressions int val exprl and
int_val expr2 (Section 6.3.3.2). If (int val exprl == int val expr2) returns
TRUE else returns FALSE.

int GT(sessionID, int val exprl, int val exp2)

Mathematic comparison between integer expressions int val exprl and
int val expr2 (Section 6.3.3.2). If (int val exprl > int val expr2) returns
TRUE else returns FALSE.

int GTE(sessionlD, int val exprl, int val exp?2)

Mathematic comparison between integer expressions int val exprl and
int_val expr2 (Section 6.3.3.2). If (int val exprl >= int val expr2) returns
TRUE else returns FALSE.

int LT (sessionlD, int_val exprl, int val exp2)

Mathematic comparison between integer expressions int val exprl and
int val expr2 (Section 6.3.3.2). If (int val exprl < int val expr2) returns
TRUE else returns FALSE.

int LTE(sessionlD, int val exprl, int val exp2)

August 2002/v2.2.2 -19- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Mathematic comparison between integer expressions int val exprl and
int val expr2 (Section 6.3.3.2). If (int val exprl <= int val expr2) returns
TRUE else returns FALSE.

int MATCH(sessionlD, int set_id, int ptrn_set_id)

Succeeds if the patterns Telos_String's in the set ptrn_set id match (partially
or completely) the names of the objects in set set id. The pattern match
conventions are described in section 6.3.7.

int BEFORE (sessionlD, set_id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) ends before the beginning of time interval
(tm2) (contained in set, set id _expr2) returns TRUE else returns FALSE.

int AFTER (sessionlD, set id exprl, set id _expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id _exprl) starts after the ending of time interval (tm2)
(contained in set, set_id_expr2) returns TRUE else returns FALSE.

int TIME_EQUAL(sessionlD, set id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) starts where time interval (tm2) (contained in
set, set id expr2) starts and finishes where tm2 finishes, returns TRUE else
returns FALSE.

int MEETS (sessionlD, set_id_exprl, set_id_expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) ends where time interval (tm2) (contained in
set, set_id_expr2) starts, returns TRUE else returns FALSE.

int MET _BY(sessionID, set_id _exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) starts where time interval (tm2) (contained in
set, set_id_expr2) ends, returns TRUE else returns FALSE.

int OVERLAPS (sessionlD, set_id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id exprl) starts before the ending of time interval (tm2)
(contained in set, set id_expr2) and ends after the beginning of tm2, returns
TRUE else returns FALSE.

int OVERLAPPED BY (sessionID, set id exprl, set_id expr2)

August 2002/v2.2.2 -20- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id exprl) starts before the ending of time interval (tm2)
(contained in set, set id_expr2) and ends after the beginning of tm2, returns
TRUE else returns FALSE. .

int DURING¢sessionlD, set id _exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) starts after the beginning of time interval
(tm2) (contained in set, set id expr2) and ends before the ending of tm2,
returns TRUE else returns FALSE.

int CONTAINS sessionlD, set id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) starts before the beginning of time interval
(tm2) (contained in set, set id expr2) and ends after the ending of tm2,
returns TRUE else returns FALSE.

int AFTER (sessionID, set id exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) starts after the ending of time interval (tm2)
(contained in set, set_id_expr2) returns TRUE else returns FALSE.

int STARTS sessionlID, set id exprl, set id_expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) starts where time interval (tm2) (contained in
set, set_id expr2) starts and ends before the ending of tm2, returns TRUE else
returns FALSE.

int STARTED BY (sessionlD, set id exprl, set id _expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) starts where time interval (tm2) (contained in
set, set_id expr2) starts and ends after the ending of tm2, returns TRUE else
returns FALSE.

int FINISHES (sessionlD, set id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) starts before the beginning of time interval
(tm2) (contained in set, set_id_expr2) and ends where tm2 ends, returns TRUE
else returns FALSE.

int FINISHED BY (sessionlD, set id exprl, set_id_expr2)

August 2002/v2.2.2 -21- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id exprl) starts after the beginning of time interval
(tm2) (contained in set, set_id_expr2) and ends where tm2 ends, returns TRUE
else returns FALSE.

int CBEQ(sessionlD, set id exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id expr2): There exist tl e
tml, t2e tm2: t1 = t2 TRUE else returns FALSE. This means that there exists at
least one element into time interval tml that is equal to at least one element
that belongs to time interval tm2.

int CBLT (sessionID, set id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id expr2): There exist tl e
tml, t2 e tm2: t1 < t2 returns TRUE else returns FALSE. This means that there
exists at least one element into time interval tml that is less than at least one
element that belongs to time interval tm2.

int CBLE(sessionID, set id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id expr2): There exist tl e
tml, t2 e tm2: t1 <= t2 returns TRUE else returns FALSE. This means that there
exists at least one element into time interval tm1 that is less than or equal to at
least one element that belongs to time interval tm2.

int CBGT (sessionlD, set id exprl, set _id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id expr2): There exist tl e
tml, t2e tm2: t1 > t2 returns TRUE else returns FALSE. This means that there
exists at least one element into time interval tm1 that is greater than at least
one element that belongs to time interval tm2.

int CBGE(sessionlD, set id exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set_id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id expr2): There exist tl e
tml, t2 e tm2: t1 >= t2 returns TRUE else returns FALSE. This means that there

August 2002/v2.2.2 -22- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

exists at least one element into time interval tm1 that is greater than or equal
to at least one element that belongs to time interval tm2.

int MBEQ(sessionlD, set_id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set_id_expr2): For-every tl € tml,
t2€ tm2: tl = t2 returns TRUE else returns FALSE. This means that every
element into time interval tm1 must be equal to every element that belongs to
time interval tm2.

int MBLT (sessionID, set id _exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id_expr2): Forevery tl € tml,
t2e tm2: tl < t2 returns TRUE else returns FALSE. This means that every
element into time interval tm1 must be less than every element that belongs to
time interval tm2.

int MBLE((sessionID, set id _exprl, set_id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id_expr2): Forevery tl € tml,
t2e€ tm2: tl <= 2 returns TRUE else returns FALSE. This means that every
element into time interval tm1 must be less than or equal to every element that
belongs to time interval tm2.

int MBGT (sessionlD, set_id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id_expr2): Forevery tl € tml,
t2e tm2: tl > t2 returns TRUE else returns FALSE. This means that every
element into time interval tm1 must be greater than every element that belongs
to time interval tm2.

int MBGE sessionlD, set_id exprl, set id expr2)

Mathematic comparison between the bounds of time intervals contained in
sets set id exprl and set id expr2. If at least one time interval (tml)
(contained in set, set id_exprl) fulfills the following condition in comparison
to the time interval (tm2) (contained in set, set id_expr2): Forevery tl € tml,
t2e tm2: tl >= t2 returns TRUE else returns FALSE. This means that every
element into time interval tm1 must be greater than or equal to every element
that belongs to time interval tm2.

August 2002/v2.2.2 -23- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

int SET_EQUAL(sessionID, set_id expl, set id exp2)

Set comparison between sets set id expl and set id exp2. If the sets are
equal returns TRUE else returns FALSE.

int SET DISJOINT (sessionlD, set_id_expl, set id exp2)

Set comparison between sets set id expl and set id exp2. If the sets are
disjoint returns TRUE else returns FALSE.

6.3.3.2 Expressions returning an integer value

Functions that are used in logical expressions and return an integer value are the
following:

int VAL(sessionlD, int val)
The integer value int_val passed as argument.
int CARD(sessionlD, set_id expr)
The cardinality of set set _id _exp (Section 6.3.3.4).

6.3.3.3 Expressions returning a system identifier

Functions that are used in logical expressions and describe an object are the
following:

int SYS_ID(int sessionID, int sysid)

The object with system identifier sysid.
int NODE(int sessionlID, | name nodename)

The node object with unique logical name nodename.
int LINK(int sessionlD, | name fromcls, | name linkname)

The link object with logical name /inkname that points from node object with
unique logical name fromcls.

6.3.3.4 Expressions returning a set identifier

Functions that are used in logical expressions and return a set identifier are the
following:

int SET_ID(sessionlD, setid)

The object with set identifier setid. If setid is 0 means the object the condition
is evaluated for.

int SET_UNION(sessionlID, set id exprl, set id expr2)

Set union between set described by set id exprl and set described by
set id_expr2. If the two sets are tuples the union is performed to the tuples
(provided they have the same number of columns).

August 2002/v2.2.2 -24- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int SET_INTERSECT (sessionlD, set id _exprl, set_id expr2)

Set intersection between set described by set id exprl and set described by
set id expr2.

int SET_DIFFERENCKE(sessionlD, set_id _exprl, set_id expr2)

Set difference between set described by set id exprl and set described by
set_id_expr2. If the two sets are tuples the difference operation is performed to
the tuples.

int SET _COPY (sessionlD, set_id_exprl, set_id_expr2)
Set copy of set described by set id expr2 to set described by set id exprl.
int GET_CLASSES(sessionlD, set_id_expr)

Apply get classes() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_ALL_CLASSES(sessionlD, sessionlD, set id expr)

Apply get_all_classes() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_SYSCLASS (sessionID, set id expr)

Apply get sysclass() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_ALL_SYSCLASSES(sessionID, set id_expr)

Apply get_all_sysclasses() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_INSTANCES(sessionlD, set_id _expr)

Apply get instances() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_ALL_INSTANCES(sessionID, set_id_expr)

Apply get_all_instances() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_CLASS_ATTR(sessionlD, set id expr)

Apply get _class_attr() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_ALL_CLASS_ATTR(sessionlD, set id expr)

August 2002/v2.2.2 -25- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Apply get_all class_attr() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_SUPERCLASSES (sessionlD, set _id expr)

Apply get superclasses() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET _ALL_SUPERCLASSES(sessionlD, set id expr)

Apply get_all superclasses() on set set_id expr and return the answer set. If
set_id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_ALL_SYSSUPERCLASSES(sessionlD, set id expr)

Apply get_all_Syssuperclasses() on set set_id expr and return the answer set.
If set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_SUBCLASSES (sessionlD, set id expr)

Apply get subclasses() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET _ALL_SUBCLASSES(sessionlD, set_id expr)

Apply get_all subclasses() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET _LINK FROM(sessionlD, set id expr)

Apply get link from() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_CLASS ATTR FROM(sessionID, set id _expr)

Apply get_class_attr _from() on set set id_expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET _LINK TO(sessionlD, set_id expr)

Apply get link to() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET FROM_VALUE(sessionlD, set id expr)

Apply get from_value() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

August 2002/v2.2.2 -26- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int GET_TO_VALUE(sessionID, set_id expr)

Apply get to_value() on set set id expr and return the answer set. If
set id expr is SET ID(0) then apply query on object the condition is
evaluated for.

int GET_LINK_FROM_BY_CATEGORY (sessionlD, set id _expr, sys_id_expr)

Apply get_link_from_by_category() with category described by sys_id expr
(Section 6.3.3.3), on set set_id expr and return the answer set. If set id expr
is SET ID(0) then apply query on object the condition is evaluated for.

int GET_LINK_TO_BY_CATEGORY (sessionID, set id expr, sys_id expr)

Apply get link to_by_category() with category described by sys id expr
(Section 6.3.3.3), on set set_id expr and return the answer set. If set id expr
is SET ID(0) then apply query on object the condition is evaluated for.

6.3.3.5 An Example

The following code segment finds all instances of current node that have exactly one
link pointing to them:
tmp set = get instances(sessionID, 0);
set filter cond(sessionlID,
EQ (sessionlD,
CARD (sessionlID,
GET LINK TO(sessionID, SET ID(sessionID,0))),
VAL (sessionID, 1)
)
)7
ans_set = get filtered(sessionID, tmp_ set);

6.3.4 General recursive queries

There are queries whose answer requires traversing of links in the SIS base. API has a
query function that starting from an object, traverses links according to some
restrictions. The restrictions have to do with the traversed links and/or the visited
nodes. Actually, the programmer has to define logical expressions, see next section on
how to do so, that are evaluated for each traversed link and visited node: if the
expression is true for some link pointing from the currently visiting node and if the
expression is true for the to-value of the link then this link is traversed forward. In the
same way if the expression is true for some link pointing to the currently visiting node
and if the expression is true for the from-value of the link then this link is traversed
backwards.

The depth of the traverse can be controlled with the set _depth() function. If not
explicitly set, the depth is not controlled.

int get_traverse by all links(int sessionlID, int set_id, int isa)

If set _id is 0, starts from the current node and traverses all the links according
to the specified conditions. If conditions have not been explicitly set then all
links are traversed. The isa argument can be any of UPWARDS, DOWNWARDS,
UP DOWN or NOISA. If upwarDs is used, then for each node visited on
traversing, all superclasses of this node are visited too. If pownwaRDS is used,

August 2002/v2.2.2 -27- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

then for each node visited on traversing, all subclasses of this node are visited
too. In case of up_pown both all superclasses and all subclasses for each node
are traversed. Nothing of these two happens when NOISA is used. The answer
set contains the system identifiers of all the traversed links.

If set _id is a positive integer, apply get traverse by all links() on each
object in temporary set set_id.

The function returns APIFail(-1) on error or the set identifier of the temporary
set where the answer is stored.

6.3.5 Conditions on recursive queries

As mentioned in the previous section the programmer can define four conditions for
the general recursive query: A condition evaluated for links pointing from the
currently visiting node, a condition evaluated for the to-value of those links, a
condition evaluated for links pointing to the currently visiting node and a condition
evaluated for the from-value of those links. The API functions for these definitions
are respectively the following:

int set_fl cond(sessionlID, log exp)
int set_tv_cond(sessionlD, log exp)
int set_tl_cond(sessionlID, log exp)
int set_fv_cond(sessionID, log exp)

The argument to these functions is a logical expression constructed as described in the
section Logical expressions - Object set filtering (section 6.3.3).

6.3.5.1 An Example
The following function calls describe the conditions for the query:

"Traverse all forward links that are of category <PhysicalObj, Parts> but visit only the
nodes that have exactly one instance."

set tl cond(sessionID, FAIL(sessionlID));

set fl cond(sessionID,
BELONGS (sessionlID,
LINK(sessionID,"PhysicalObj","Parts"),
GET CLASSES(sessionID, SET ID(sessionID,O0))
)
);
set tv cond(sessionlD,
EQ(sessionID,
VAL (sessionID, 1),
CARD(sessionlID,
GET INSTANCES (sessionID, SET ID(sessionID,0))
)
)
);
The following function calls describe the conditions for the query:

"Traverse all forward links that are of category <PhysicalObj, Parts> but visit only the
nodes that are pointed to by exactly one link or exist in the answer set 3."

August 2002/v2.2.2 -28- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

set tl cond(sessionID,FAIL(sessionID));
set fl cond(sessionID,
BELONGS (sessionlID,
LINK(sessionID,"PhysicalObj","Parts"),
GET CLASSES(sessionID, SET ID(sessionID, 0))
)
);
set tv _cond(sessionlD,
OR(sessionID,
EQ(sessionlID,
VAL (sessionID, 1),
CARD (sessionlID,
GET LINK TO(sessionID, SET ID(sessionID,0))
)
),
BELONGS (sessionlID,
SYS ID(sessionID,0),
SET ID(sessionID, 3)

)7

6.3.6 Special recursive queries

There are some recursive queries, special cases of the general recursive query, that are
frequently used and are explicitly implemented for efficiency. The only condition
taking into account in these queries is the category or the meta-category of the
traversed links. These categories must have been defined with set_categories().

When traversing is done with restricted depth, the nodes which have links that could
be traversed but this didn’t happed because of the depth, are accumulated into an
edge set at the server site and can be given to the client application with the

These functions return ApIFail(-1) on error or the set identifier of the temporary
set where the answer is stored.

return_edge node() described below.
int get_traverse by category(int sessionlD, int set_id, int isa)

Before calling this query function some categories must have been defined
with the set_categories() function. If set id is 0, starts from the current node
and traverses all the links whose category is one of those previously defined
with the set _categories() function. With the set_depth() function the depth of
traversing can be controlled. The isa argument can be any of UPWARDS,
DOWNWARDS, UP_DOWN or NOISA. If upwaRrDS is used, then for each node visited
on traversing, all superclasses of this node are visited too. If powNwaRDS is
used, then for each node visited on traversing, all subclasses of this node are
visited too. In case of up pown both all superclasses and all subclasses for
each node are traversed. Nothing of these two happens when NoTsA is used.

The answer set contains the system identifiers of all the traversed links.

If set id is a positive integer, apply get traverse by category() on each
object in temporary set set_id.

int get_traverse_by meta_category(int sessionlD, int set_id, int isa)

August 2002/v2.2.2 -29- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Before calling this query function some categories must have been defined
with the set categories function. If set_id is 0, starts from the current node and
traverses all the links whose meta-category is one of those previously defined
with the set categories() function. With the set_depth() function the depth of
traversing can be controlled. The isa argument can be any of UPWARDS,
DOWNWARDS, UP_DOWN or NOISA. If upwaARDS is used, then for each node visited
on traversing, all superclasses of this node are visited too. If powNwaRDS is
used, then for each node visited on traversing, all subclasses of this node are
visited too. In case of up_pown both all superclasses and all subclasses for
each node are traversed. Nothing of these two happens when NoTsA is used.

The answer set contains the system identifiers of all the traversed links.

If set id is a positive integer, apply get traverse by meta_ category() on
each object in temporary set set_id.

6.3.7 Pattern Matching queries

There is a query to select from a set of objects those whose the name matches
(completely or partially) the logical OR of the Telos_String's patterns. The supported
patterns are:
1. *string
Matches the names that end by string.
2. string*
Matches the names that start by string.
3. *string™® or string
Matches the names that contain the substring string.

These functions return APIFail(-1) on error or the set identifier of the temporary
set where the answer is stored.

The API functions with the above functionality are the following.
int get_matched(int sessionlD, int obj set id, int ptrn_set id)

From all the objects in the set obj set_id select those objects that match any of
the string patterns in the set ptrn_set id. The match is case sensitive. The set
ptrn_set_id can be constructed using the set_put_prm() function. The answer
set contains all the selected objects. If 0bj set id is 0, perform the match on
the current node and if there is a match put the current node in the answer set
or return an empty set.

int get matched_case_insensitive(int sessionlD, int obj set id, int ptrn_set _id, int
encoding)

From all the objects in the set 0bj set_id select those objects that match any of
the string patterns in the set ptrn_set id. The match is case insensitive. The set
ptrn_set_id can be constructed using the set_put_prm() function. The answer
set contains all the selected objects. If obj set id is 0, perform the match on
the current node and if there is a match put the current node in the answer set

August 2002/v2.2.2 -30- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

or return an empty set. The encoding parameter may be 1 for Latinl, 7 for
Latin7. No other encodings are supported yet.

int get_matched_string(int 0bj set id, cm value *cmv, int match_type)

From all the objects in the set 0obj set id select those objects that match the

string in c¢mv according to the match type criterion (STRING MATCHED,
STRING LESS EQUAL, STRING LESS_ THAN, STRING_EQUAL,

STRING NOT EQUAL). In case of sTRING MATCHED it performs the selection
using the string as a pattern string as described above. In all other cases the
match is performed on the exact string. The answer set contains all the
selected objects. If 0bj set id is 0, perform the match on the current node and
if there is a match put the current node in the answer set or return an empty
set.

6.3.7.1 An Example
The following code segment finds all instances of current node which start by "Ana":

cm_value prm val;

assign_string(&prm val, "Ana*");

tmp set = get instances(sessionID, 0);

ptrn_set = set get new(sessionlD);

set put prm(sessionID, ptrn set, &prm val);

ans_set = get matched(sessionID, tmp set, ptrn set);

6.4 Set manipulation functions

As mentioned earlier the answers of the query functions are located into temporary
sets. There is group of functions for manipulating these sets (operations between sets,
freeing sets etc.).

There is a finite number of temporary sets that can be used and so no more useful sets
should be released in order to be used again. We handle these sets with their
identifier that is a positive integer. The use of unique identifiers for the temporary sets
is similar to the use of file descriptors in UNIX operating system.

Most of the functions return 2PISucc(0) on success and APIFail(-1) on error,
except the set _get mew() function which returns a set identifier and the
set_get card() function which return the cardinality of a set.

int reset set(int sessionlD, int set_id)

Each set has a pointer that moves along the objects of the set and is used when
we get these objects one-by-one. This function just sets this pointer to the first
item of the set and its call is necessary before first call of a function that reads
the next object in a set.

int reset_edge_set(int sessionlD)

Reset the pointer of the edge_set at the first item of the set. (See Section 6.3.6
for definition of the edge set).

int free set(int sessionlD, int set_id)

August 2002/v2.2.2 -31- ICS-FORTH

int

int

int

int

int

int

int

int

int

int

int

int

int

SIS- Application Programmatic Interface, Reference Manual

This function free the temporary set set id so that it can be used later by some
other query. Freeing a set is like closing a file descriptor in UNIX.

free all sets(int sessionlD)

This function frees all the temporary sets.
set_get new(int sessionlD)

This function returns the set identifier of a new empty set.
set_union(int sessionlD, int set_idl, int set_id?2)

After this operation the first set is the union of the two sets given as
arguments. If the two sets are tuples the union is performed to the tuples
(provided they have the same number of columns).

set_intersect(int sessionlD, int set idl, int set id2)

After this operation the first set is the intersection of the two sets given as
arguments.

set_difference(int sessionlD, int set idl, int set id2)

After this operation the first set is the difference of the two sets given as
arguments. If the two sets are tuples the difference operation is performed to
the tuples.

set_equal(int sessionlD, int setl, int set2)
This function returns TRUE if setl = set2.
set_disjoint(int sessionlD, int setl, int set2)
This function returns TRUE if the intersection of setl, set2 is empty.
set_copy(int sessionlD, int setl, int set2)
This function copies set2 to setl.
set_put(int sessionlD, int set_id)
This function puts the current node into set set_id.
set_put_prm(int sessionlD, int set id, cm_value *cmval)

This function puts the primitive value (integer, string, time etc) cmval into set
set_id.

set_get_card(int sessionlD, int set _id)

This function returns the number of object that exist in set set id.
set_member_of(int sessionlD, int set_id)

This function checks whether the current node exists in set set _id.

set_position(int sessionlD, int set id, int pos)

This function sets the internal server set cursor of set set_id to element pos.

August 2002/v2.2.2 -32- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int set_del(int sessionID, int set_id)

This function deletes the current node from set set id.
int set clear(int sessionlD, int set_id)

This function clears the set set _id.
int set clear lower(int sessionlD, int set_id)

This function clears the set set id from position 0 up to current position. It
updates the set’s cardinality and sets the current position to the beginning of
the set. It does not delete the element located in current position.

6.5 Read contents of answer sets

The answers of any of the described queries are located in temporary sets. There is a
group of functions to read the information from an answer set. Before first calling any
of these functions to read the objects of an answer set A the pointer of this set must be
reset at the first item of the set with the reset_set() function.

Most of the following functions operate like this: when called, they give the
answer for the next object in the set they apply on and return Ap1Succ(0). If any
error occurred or end of set reached they return Ap1Fail(-1).

int return_nodes(int sessionlD, int set _id, | name cls)
Return the logical name cls of the next object in set set _id.
int return_edge nodes(int sessionlD, int *sysid, [name node)

Return the system identifier sysid and the logical name node of the next object
in edge_set. (See Section 6.3.6 for definition of the edge set).

int return_full nodes(int sessionlID, int set id, int *sysid, | name node, | name
Sclass)

Return the system identifier sysid, the logical name node and the system class
Sclass of the next object in set set_id.

int return_prm(int sessionlD, int set _id, cm_value *cmv)

An answer set may contain primitive values (integers, strings etc) and the
previous functions would fail to read these items. This function returns the
next object in set set id whatever it is. (See section 6.8.1 for definition of
cm_value structure).

int return_categ_ids(int sessionlD, int set_id, int *sysid, | name cls, | name categ)

Return the logical name categ and the system identifier sysid, the logical name
cls of the from-class of the next object in set set id. Set set_id is supposed to
contain link objects.

int return_categories(int sessionlD, int set_id, | name cls, | name categ)

August 2002/v2.2.2 -33- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Return the logical name categ and the logical name c/s of the from-class of the
next object in set set_id. Set set_id is supposed to contain link objects.

int return_link(int sessionlD, int set_id, | name cls, | name label, cm_value *cmv)

For the next object in set set id, supposes it is a link object, and returns the
logical label name of the object, the logical name cls of the class which it is
pointing from and the object it is pointing to cmv. Since this object may not be
a class but a primitive value (string, integer etc.) it is returned in a structure
cm_value which is described in section 6.8 and in Appendix A — C-API
function declaration.

int return_link id(int sessionID, int set id, | name cls, int *fcid, int *sysid,
cm_value *cmv, int *traversed)

For the next object in set set id, supposes it is a link object, and returns the
logical name cls of the class which it is pointing from, the object’s system
identifier sysid, the system identifier fcid of the object it is pointing from and
the object (or primitive value) cmv it is pointing to. The flag traversed
indicates if the specific link belongs to a category that was previously set with
the set_categories() function with direction BACKWARD.

int return_full _link(int sessionlD, int set id, | name cls, | name label, | name
categ, | name fromcls, cm_value *cmv, int *unique_category, int *traversed)

Return the objects of set set id. It is supposed that the objects are link nodes
are so it returns the logical name of each object /abel, the logical name of the
class where it pointing from c/s, the object it is pointing to cmv which is a
structure cm_value described later and also the category of the returned link
(from_cls, categ).

Flag unique_ category indicates if given category is unique (link object may
have more than one class) and flag traversed indicates if the specific link
belongs to a category that was previously set with the set_categories()
function with direction BACKWARD.

int return_full_link_id(int sessionID, int set_id, | name cls, int *clsid, | name label,
int *linkid, | name categ, | name fromcls, int *categid, cm_value *cmv,
int *unique_category)

Return the objects of set set _id. It is supposed that the objects are link nodes
are so it returns the logical name of each object label, its system identifier’s
linkid, the logical name cls of the class where it 1is pointing from and its
system identifier clsid, the object it is pointing to cmv which is a structure
cm_value described later and also the category of the returned link (from_cls,
categ) and its system identifier categid.

Flag unique_category indicates if given category is unique (link object may
have more than one class).

int return_isA(int sessionlD, int set_id, | name obl, [name ob2)

Return the logical names ob/ and ob?2 of a pair of objects A and B, existing in
set set_id and A isA B.

August 2002/v2.2.2 -34- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int return_isA_id(int sessionID, int set id, | name obl, int *idl, | name ob2, int
*id2)

Return the logical names and their system identifiers ob!, idl and ob2, id2 of
a pair of objects A and B, existing in set set_id and A isA B.

int return_inst(int sessionlD, int set_id, | name obl, | name 0b2)

Return the logical names ob/ and ob2 of a pair of objects A and B, existing in
set set_id and A is instance of B.

int return_inst_id(int sessionlD, int set id, | name obl, int *idl, | name ob2, int
*id2);)

Return the logical names and system identifiers obl, id/ and 0b2, id2 of a pair
of objects A and B, existing in set set id and A is instance of B.

int return_field(int sessionlD, int set _id, cm_value *cmv)

What we get by sequential calls of this function for each object in set set id is
the following: the logical name of the object and for each category previously
defined with the set_categories function, get the to value of the links whose
category was set FORWARD or the from value of the links whose category was
set BACKWARD. The function ignores categories that where set BOTH DIR.

Each item of the information that must be returned by this function is returned
one by one by multiple calls of the function. The return value specifies the

kind of information that is being returned (namely END OF TUPLE,
END OF SET, END OF FIELD, EMPTY FIELD, MIDDLE OF FIELD,

EMPTY FIELD END OF TUPLE).

int return_hidlink(int sessionlD, int set_id, | name cls, int *cls_id, | name label, int
*sysid, cm_value *cmvl, cm_value *cmv2)

Returns the from-class name, logical name label, sysid and to-value of next
object in set set_id supposing it to be a link object. If the from-object is linked
with an inverse link of category previously set with set_categories() function
with an object A then object A is returned in the position of from-class since
this object is supposed to be some kind of member of object A. Recursively
the same happens if A has an inverse links of this specific category.

With this mechanism we can get an abstraction of some information hiding the
information of links that are instances of a specific category.

int return_xml_description(int sessionlD, int set_id, char **xml_string)

Return the XML description xml_string of the next object in set set id. The
function allocates space for buffer xm/ string. The allocated space should be
freed after its use with free_ sis_allocated space(). A detailed description of
the memery management needed is presented in section 6.8.2. The xml
document type definition is presented in “Appendix F — Describing in XML”.

August 2002/v2.2.2 -35- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

6.5.1 Parametric projection

API provides a mechanism to project the objects of a set as well as some information
for each of them. This information can be retrieved by answering a predefined query
for each object of the set. This kind of projection is achieved with the
return_projection() function and the predefined query is declared with the
set_proj_cond() function:

int return_projection(int sessionlD, int set id, cm_value *cmv)

What we get by sequential calls of this function for each object in set set id is
the following : the logical name of the object and the logical name of the
objects in the answer set that is retrieved by applying a predefined query to the
object. This function returns END OF SET when the end of set is reached,
APIFail(-1) in case of error and a positive integer on success which specifies

the kind of information that is being returned (namely END OF TUPLE,
END OF SET, END OF FIELD, EMPTY FIELD, MIDDLE OF FIELD,

EMPTY FIELD END OF TUPLE).
int set proj_condl(int sessionlD, int set _expr)
int set proj_cond2(int sessionlD, int set _expr)
int set proj cond3(int sessionlD, int set _expr)
int set_proj_cond4(int sessionlD, int set_expr)

Define a query that is constructed according to the functions presented in
section 6.3.3.4.

int set num_of proj(int sessionlD, int n)

Used to set which of the set proj conds will be used. For example:
set num_of proj(3) means that set proj condl(), set proj cond2() and
set_proj_cond3() should be used.

6.6 Tuple handling functions

API provides a set of functions for handling tuples. Tuples are sets of columns,
created by set_current node() and get new_col(). The columns are indexed starting
from 0. The query functions operate on the working column of a tuple the same way
the operate on a set. The default working column of a tuple is the its column, and it
can be changed by set_set_input().

The functions presented below return ApIFail(-1) on error and APISucc(0) on
success except as stated otherwise.
int get new_col(int sessionlD, int set_id)
Creates and appends a new column to the tuple set_id.
int tuple_set_input_col(int sessionlD, int set id,int x)

Sets the column x as the working column of the tuple set id.

August 2002/v2.2.2 -36- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int tuple_set join_pos(int sessionlD, int set_id, int x, int y)

Marks the column x as the column of the tuple set id to be joined to the
column y of the candidate tuple to joined with by tuple_join() function.

int tuple reset join_pos(int sessionlD, int set_id)

Resets the marked column positions of the tuple set id that where set by
tuple_set_join_pos() function.

int tuple join(int sessionlD, int set_idl, int set id2)

Forms the join of the tuple set idI that also holds the marked tuple’s column
position information (set by tuple_set_join_pos()) with the tuple set id?2.

int tuple union(int sessionlD, int set idl, int set_id2)

Forms the union of the tuple set idl with the tuple set id2.
int tuple_difference(int sessionlD, int set_idl, int set _id2)

Forms the difference of the tuple set idl with the tuple set id2.
int tuple no projection_column(int sessionlD, int set_id, int x)

Hides the column x from tuple sef id connecting accordingly the
"surrounding" tuples.

int return_tuple(int sessionlD, int set id, cm value *cmv)

Each time this function is called it returns the next item in the given tuple in
cmv. If the current tuple position is empty cmv will be undefined and will have
the tag TypE EMPTY. It returns EnD oF TUPLE if the end of the tuple was
reached or END OF FIELD if the end of the current field was reached.

int return_relation(int sessionlD, int from_set ,int categ_set, int to_set)
This function is not implemented yet.
int unary_on_tuple(int sessionlD, int set _id)

This function is not implemented yet.

6.7 Update Functions

The API provides a set of functions used to make updates in the Database. The
operations that can be performed are:

e Addition operations
e Deletion operations

e Modification operations

A difference between the update functions and the rest of the API is that they do not
require a current node to work on. Also the concept of the TDENTIFIER is used. An
IDENTIFIER is a structure that can hold either a logical name (char *) or a system
identifier (int). The type of the IDENTIFIER is given by a tag. Most functions work

August 2002/v2.2.2 -37- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

with both types. If a function requires only a logical name or only a system identifier
it is stated in the function description.

In order to execute updates on a database a transaction session must be initiated. A
transaction session can either be initiated directly or from within a query session.
When a transaction session is in progress a write lock is applied to the database and
only the writing client can access it. A transaction session begins with the
begin_transaction() function and ends with either the end_transaction() function
(commits changes) or with the abort transaction() function (does not commit
changes). When the transaction session is initiated from within a query session, on
termination of the transaction session the query session continues, and thus a read
lock exists on the database. In order to release the read lock end the query session by
calling end_query().

The functions presented below return APIFail(-1) on error and APISucc(0) on
success.

6.7.1 Addition Operations

These operations are used to add objects to the database:
int Add_Node(int sessionID, IDENTIFIER *node name, int level)

Adds a node with the logical name node name at instantiation level level
(SIS API TOKEN CLASS,SIS API S CLASS,SIS API M1 CLASS,SIS API M
2 CLASS,SIS API M3 CLASS,SIS API M4 CLASS).

int Add_Named_Attribute(int sessionID, IDENTIFIER *attribute, IDENTIFIER
*from, cm_value *to, int iLevel, int catSet)

Adds a named attribute with the logical name attribute pointing from from
(IDENTIFIER contains the SYSID) to cm value fo at instantiation level
iLevel

(SIS_API_TOKEN CLASS,SIS API S CLASS,SIS API Ml CLASS,SIS API M
2 CLASS,SIS API M3 CLASS,SIS API M4 CcLASS) with categories the
categories given in the set identifier catSet. If catSet is -1 then no categories
are used. The function fails if any of from or to does not exist, or any of iLevel
or catSet 1s invalid

int Add_Unnamed_Attribute(int sessionlD, IDENTIFIER *from, cm_value *to, int
catSet)

Adds an unnamed attribute pointing from from to cm_value to with categories
the categories given in the set identified by catSet. If catSet is -1 then no
categories are used. The function fails if any of from or fo does not exist, or
catSet is invalid.

int Add_Instance(int sessionlD, IDENTIFIER *from, IDENTIFIER *to)

Adds an instance pointing from from to to. It fails if any of from or to does not
exist.

Add_Instance Set(int sessionlD, int from_set, to IDENTIFIER *to)

August 2002/v2.2.2 -38- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Adds all instances in set from_set pointing to fo. It fails if an instance with the
characteristics given already exists.

int Add_IsA(int sessionID, IDENTIFIER *from, IDENTIFIER *to)

Adds an isA pointing from from to to. It fails if any of from or to does not
exist.

6.7.2 Delete Operations
These operations are used to delete objects from the database:

int Delete_Node(int sessionID, IDENTIFIER *node _name)

Deletes a node with the logical name (or sysid) node _name. It fails if the node
does not exist or has dependencies with other objects.

int Delete Named_Attribute(int sessionID, IDENTIFIER *link name, IDENTIFIER
*from)

Deletes a named attribute with the logical name (or sysid) /ink name from
from. The from parameter must always specify a SYSID. It fails if the link
link_name does not exist or has dependencies with other objects.

int Delete_Unnamed_Attribute(int sessionlD, IDENTIFIER *attribute)

Deletes an unnamed attribute with the given SYSID (given in attribute). It
fails if a link with the given SYSID attribute does not exist or has
dependencies with other objects.

int Delete_Instance(int sessionlD, IDENTIFIER *from, IDENTIFIER *to)

Deletes an instance pointing from from to to. It fails if an instance with the
given from, to does not exist or the given link has dependencies with other
objects exist.

Delete_Instance_Set(int sessionlD, int from_set, IDENTIFIER *to)

Deletes all the instances of set from_set pointing to fo. It fails it an instance
with the given from does not exist or has dependencies with other objects.

int Delete _IsA(int sessionID, IDENTIFIER *from, IDENTIFIER *to)

Deletes an isA pointing from from to to. It fails if an isA with the given from,
to does not exist or the given isA has dependencies with other objects.

6.7.3 Modification Operations
These operations are used to modify the characteristics of objects in the database:

int Rename Node(int sessionlD, IDENTIFIER *node, = IDENTIFIER
*NewNodeName)

Change the name of a node. The current node is specified by IDENTIFIER
node and the new logical name for the node by NewNodeName. 1t fails if a
node with the given IDENTIFIER node does not exist or a node with the given
IDENTIFIER NewNodeName already exists.

August 2002/v2.2.2 -39- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

int Rename_Named_Attribute(int sessionID, IDENTIFIER *name, IDENTIFIER
*from, IDENTIFIER *NewName);

Change the name of a named attribute. The current named attribute is
specified by IDENTIFIER name (logical name) and the from value, or the
SYSID in name. The new logical name for the named attribute is specified by
NewName. It fails if a named attribute with the given IDENTIFIER name does
not exist from IDENTIFIER from or a named nttribute with the given
IDENTIFIER NewName already exists from IDENTIFIER from.

int Change Named_Attribute_To(int sessionID, IDENTIFIER *Attribute,
IDENTIFIER *From, cm_value *To, cm_value *NewTo);

Change the To value of a named attribute. The named attribute is specified by
IDENTIFIER Attribute and the from value IDENTIFIER From (always
SYSID). The current to value is required for checking and it should be
specified in cm_value 7o. The new To value for the named attribute is
specified by cm_value NewTo. It fails if (a) a named attribute with the given
IDENTIFIER name does not exist, (b) the NewTo value does not exist and
cannot be created, or (c) a named attribute with the given name Attribute and
From already exists.

int Change Unnamed_Attribute_To(int sessionID, IDENTIFIER *Attribute,
cm_value *To, cm_value *NewTo);

This function is not implemented yet. It returns Ap1Fail.

int Change Instance To(int sessionID, IDENTIFIER *from, IDENTIFIER *to,
IDENTIFIER *NewTo);

Change the To value of an instance. The instance is specified by the from
value in IDENTIFIER from and the To value IDENTIFIER fo. The new To
value for the instance is specified by IDENTIFIER NewTo. It fails if from is
not an instance of fo or the New To value does not exist.

int Change IsA_To(int sessionID, IDENTIFIER *from, IDENTIFIER *to,
IDENTIFIER *NewTo)

Change the To value of an isA. The instance is specified by the from value in
IDENTIFIER from and the To value IDENTIFIER fo. The new To value for
the instance is specified by IDENTIFIER NewTo. It fails if there is on isA
between the given from and to, or the New To value does not exist.

6.8 Miscalaneous utility structures and functions

The functions of the SIS C application programmatic interface (C-API) described in
the previous sections use various structures as arguments. In the following we present
the type definitions of these data types:

August 2002/v2.2.2 -40- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

6.8.1 Utility structures

6.8.1.1 struct IDENTIFIER

An IDENTIFIER is a structure that can hold either a logical name (char *) or a system
identifier (int). The type of the IDENTIFIER is given by a tag. Most functions
described in section 6.7 work with both types.

6.8.1.2 struct cm_value

A cm_value is a structure to read the primitive values (string, integer, etc.) form an
answer set using the functions described in section 6.5 (see return_prm(),
return_link(), etc.).

It is defined as follows:

typedef struct cm value {
int type; /* TYPE_INT, TYPE_STRING, TYPE_ FLOAT,
TYPE NODE, TYPE EMPTY, TYPE TIME */
int sysid;
union {

TIME t;
char *s;
int n;
float r;
tvalue;

tem value;
typedef struct cm value cm_value;

Here follows a list of functions to set the cm value fields.

int assign_node(cm_value *cmv, char *s, int sysid)
int assign_string(cm_value *cmv, char *s)

void assign_time(cm value *cmv, TIME t)

void assign_int(cm value *cmv, int n)

void assign_float(cm value *cmv, float r)

void assign_empty(cm value *cmv)

The functions above set the appropriate type and value fields according to
their argument passed. Notice that assign_node() and assign_string() allocate
space that should be freed when is no needed any more (see function
free sis_allocated_space()).

The system also allocates dynamically, space to return string information to a
cm_value structure, this space should be freed when not needed.

6.8.1.3 struct category_set

Special recursive queries described in section 6.3.6 use as query condition the
category or the meta-category of the traversed links. This condition is set by
set_category() function that takes as argument a category set array.

The definition of a category set is as follows:

struct category set {
name buffer fcl;
name buffer cat;
int direction; /* FORWARD, BACKWARD, BOTH DIR */
}i
typedef struct category set categories_set[NUMBER OF CATEGORIES];

August 2002/v2.2.2 -41- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

6.8.2 Memory management

There are three cases that the system allocates dynamically space. This space is
needed to hold string values that their size cannot be estimated in advance: (a) space
to return string information to a cm value structure (function return_full link()
allocates space), (b) space to hold the logical name of a node or a string value field of
struct cm value (functions assign node() and assign_string() allocate space) and
(c) space for the XML description of an object (function return_xml_description()
allocates space).

In all the above cases the allocated space should be freed after its use with
free_sis_allocated_space(). This function is a simple call to system’s function fiee().
It is created to provide SIS C API dynamic library (DLL) with a consistent way to de-
allocate space that was allocated by the DLL, in order to solve the following memory
management problem:

An EXE and a DLL each have their own memory heaps. When memory is allocated
calling malloc() inside the DLL, the memory is owned by the DLL and it has to be
managed by the DLL. If the memory is allocated in the EXE, it is owned by the EXE
and has to be managed accoding. If the EXE tries to free a block that was allocated by
the DLL, or vice versa, the result is a corrupted heap.

Thus if you are using the DLL of the SIS C API do not use free(). Use
free_sis_allocated space() instead.

August 2002/v2.2.2 -42- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix A — C-API function declaration

Here follows a list of the type definitions of data types seen in the argument list of
some functions of the SIS C application programmatic interface (C-API):

typedef char 1 _name[LOGINAM SIZE];
typedef char name buffer[INPUT LOGINAM SIZE];

struct category set {
name buffer fcl;
name buffer cat;
int direction; /* FORWARD, BACKWARD, BOTH DIR */
}i
typedef struct category set categories_set[NUMBER OF CATEGORIES];

typedef struct cm value {
int type; /* TYPE_INT, TYPE_STRING, TYPE_FLOAT,
TYPE_NODE, TYPE EMPTY, TYPE TIME */
int sysid;
union {

TIME t;
char *s;
int n;
float r;
}value;

tem value;
typedef struct cm value cm_value;

Here follows a list of functions to set the cm value fields.

char *cm to str(cm value *val);
void print val(cm value *cmv);

int assign node (cm value *cmv, char *s, int sysid);
int assign string(cm value *cmv, char *s);

void assign_time(cm value *cmv, TIME t);

void assign int(cm value *cmv, int n);

void assign:float(cm_value *cmv, float r);
void assign_empty(cm value *cmv);

ATTENTION !!!'" Since the system dynamically allocates space to return string
information to a cm_value structure, this space should be freed when not needed
(see section 6.8.2) on memory management.

In the following pagesof the appendix we present the complete listing of the definition
of the functions the API consists of.

August 2002/v2.2.2 -43- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

/**
*

* Semantic Index System

*

* COPYRIGHT (c) 1992 by Institute of Computer Science,

i3 Foundation of Research and Technology - Hellas
&5 POBox 1385, Heraklio Crete, GR-711 10 GREECE
*

*

* ALL RIGHTS RESERVED

*

* This software is furnished under license and may be used only in
* accordance with the terms of that license and with the inclusion
* of the above copright notice. This software may not be provided
* or otherwise made available to, or used by, any other person. No
* title to or ownership of the software is hereby transferred.

*

*

* Module : c_wrapper.h

* Version : 202.12

*

* Purpose : Wraps the C++ API and provides a C API.

*

* Author : P. Karamaounas

* Creation Date : Date of last update : 05/26/00
*

* Remarks

*

*

*

**/

void get db dir(char **db dir);

int * init start telos(char *db dir, int wr_permission = 0);
/*
Open the SIS API
*/
int create SIS SA Session(int *sessionld, int *start t, char *Server, int port, char
*DBUserName, char *DBUserPassword) ; // Stand Allone

int create SIS _CS_Session(int *sessionld, char *Server, int port, char *DBUserName,
char *DBUserPassword); // Client-Server
int release SIS Session(int sessionId);

/*
Used to open a connection to the SIS Server

*/

int open connection(int sessionId);

int close connection(int sessionId);

void set server info(char *Server, int port);

int GetSocket (int sessionId);

/*
Used by tools like the telos parser to get locks

*/

int get writelock(int sessionId);

int get readlock(int sessionId);

int release lock(int sessionId);

/*
Begin-end a Transaction or Query session
*/
int begin transaction(int sessionId);
int abort transaction(int sessionId);
int end transaction(int sessionId);
int begin query(int sessionId);
int end query(int sessionId);

/*
Get or set error messages from/to the SIS Server

*/

int put error message (int sessionId, char *message);

int get error message (int sessionId, char *message);

int reset error message (int sessionId);

int reset user error message (int sessionId);

int get_user_error_message (int sessionld, char* mess, int *NumOfStrParams, int
*StrSize, int *NumOfIntParams) ;

int get user error params (int sessionId, char *StrParams, int NumOfStrParams, int
StrSize, int *IntParams, int NumOfIntParams) ;

int put user error message (int sessionId, char* mess);

August 2002/v2.2.2 -44- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

/*
Functions used to set the cm value fields.
*/
int assign node (int sessionId, cm value *val, char *s, int id);
int assign string(int sessionId, cm value *val, char *s);
int assign_int (int sessionId, cm value *val, int n);
int assign float (int sessionld, cm value *val, float r);
int assign time (int sessionId, cm value *val, TIME t);
int assign_empty(int sessionId, cm value *val);
int cm _to str(int sessionld, cm value *val, char *str, int str_size);
int string to primitive (int sessionId, char *message, char *value, cm value *cmval);

/*
Function used to free allocated space for get xml description()
and cm_value string fields.
*/
void free sis allocated space (int sessionId, char* buffer);
/*
Query Functions
*/

int reset query(int sessionId);

int reset name_scope (int sessionId);

int pop name scope (int sessionId);

int set current node(int sessionId, char *str);

int set current node id(int sessionId, int id);

int set categories(int sessionId, categories set);

int set depth(int sessionId, int depth);

int set num of proj(int sessionId, int n);

int get category of link from(int sessionId, int set id, char *label);

int get traverse by all links(int sessionId, int set id, int isa);

int get traverse by category(int sessionId, int set id, int isa);

int get traverse by meta category(int sessionId, int set id, int isa);

int get matched(int sessionId, int obj set id, int ptrn_set id);

int get matched case insensitive(int sessionId, int obj set id, int ptrn set id, int
encoding) ;

int get matched string(int sessionId, int obj set, cm value *cmv, int);

int get classid(int sessionId, 1 name lname, int *sysid);

int get linkid(int sessionId, 1 name fromcls, 1 name label, int *sysid);

int get loginam(int sessionId, int sysid, 1 name lname);

int get filtered(int sessionId, int set id);

int get classes(int sessionId, int set_id);

int get all classes(int sessionld, int set id);

int get Sysclass(int sessionId, int set id);

int get _all Sysclasses(int sessionId, int set id);

int get instances(int sessionId, int set id);

int get all instances(int sessionId, int set id);

int get superclasses(int sessionId, int set id);

int get _all superclasses(int sessionId, int set id);

int get_all Syssuperclasses(int sessionlId, int set_id);

int get subclasses (int sessionId, int set id);

int get all subclasses(int sessionId, int set id);

int get link from(int sessionId, int set id);

int get class_attr from(int sessionId, int set id);

int get inher class attr(int sessionId, int set id);

int get class attr(int sessionId, int set id);

int get _all class_attr(int sessionId, int set id);

int get inher link from(int sessionId, int set id);

int get _inher link to(int sessionlId, int set_id);

int get link to(int sessionId, int set id);

int get category from(int sessionId, int set id);

int get category to(int sessionId, int set id);

int get link from by category(int sessionId, int set_id, 1 name fromcls, 1 name
cateq);

int get link from by meta category(int sessionId, int set id, 1 name fromcls, 1 name
cateq) ;

int get link to by category(int sessionId, int set id, 1 name fromcls, 1 name categ);
int get_link to by meta category(int sessionld, int set_id, 1 name fromcls, 1 name
cateq) ;

int get to node(int sessionId, int set_id);

int get from node (int sessionId, int set id);

int get to node by category(int sessionId, int set id, 1 name fromcls, 1 name categ);
int get from node by category(int sessionId, int set id, 1 name fromcls, 1 name
cateq) ;

int get to _node by meta category(int sessionld, int set_id, 1 name fromcls, 1 name
cateq);

int get from node by meta category(int sessionId, int set id, 1 name fromcls, 1 name
cateq) ;

int get from value (int sessionId, int set id);

int get to value(int sessionId, int set id);

August 2002/v2.2.2 -45- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

/*
Functions used to work with sets
*/
int reset_set (int sessionld, int set_id);
int set position(int sessionlId, int set id, int pos);
int set clear (int sessionId, int set id);
int set clear lower (int sessionId, int set id);
int reset_ edge_set (int sessionId);
int free set (int sessionId, int set id);
int free all sets(int sessionId);
int set get new(int sessionId);
int set get card(int sessionId, int set id);
int set put(int sessionId, int set id);
int set put prm(int sessionId, int set_id, cm value *cmval);
int set del(int sessionId, int set id);
int set member of (int sessionId, int set id);
int set union(int sessionId, int set idl, int set id2);
int set copy(int sessionId, int set idl, int set id2);
int set_intersect (int sessionId, int set_idl, int set_id2);
int set difference(int sessionId, int set_idl, int set_id2);
int set disjoint(int sessionId, int set idl, int set id2);
int set _equal (int sessionId, int set_idl, int set id2);

/*
Functions used to obtain set contents

*/

int return nodes (int sessionld, int set id, 1 name cls);

int return_edge nodes (int sessionlId, int *sysid, 1_name node);

int return full nodes(int sessionId, int set id, int *sysid, 1 name node, 1 name

Sclass) ;

int return prm(int sessionId, int set id, cm value *cmv);

int return categories(int sessionId, int set id, 1 name cls, 1 name categ);

int return categ ids(int sessionId, int set id, int *sysid, 1 name cls, 1 name cateq);

int return link(int sessionId, int set_id, 1 name cls, 1 name label, cm value *cmv);

int return link id(int sessionId, int set id, 1 name cls,int *fcid, int

*sysid,cm value *cmv, int *traversed);

int return full link(int sessionId, int set_id, 1 name cls, 1 name label, 1 name

categ, 1 name fromcls, cm value *cmv, int *unique category, int *traversed);

int return full link id(int sessionId, int set id, 1 name cls, int *clsid, 1 name

label, int *1linkid, 1 name categ, 1 name fromcls, int *catid, cm value *cmv, int

*unique category);

int return isA(int sessionlId, int set_id, 1 name obl, 1 name ob2);

int return isA id(int sessionId, int set id, 1 name obl, int *idl, 1 name ob2, int

*1d2) ;

int return inst (int sessionId, int set id, 1 name obl, 1 name o0b2);

int return inst id(int sessionId, int set id, 1 name obl, int *idl, 1 name ob2, int

*1d2) ;

int return_field(int sessionId, int set_id, cm_value *cmv);

int return projection(int sessionId, int set id, cm value *cmv);

int return_hidlink(int sessionId, int set id, 1 name cls,int *cls id, 1 name label,int

*sysid, cm value *cmvl, cm value *cmv2);

int return xml description(int sessionId, int set id, char** xml string);

/*
Functions used to work with projections

*

/
int set tv cond(int sessionId, int exp)
int set fv cond(int sessionId, int exp);
int set tl cond(int sessionId, int exp)
int set fl cond(int sessionId, int exp)
int set filter cond(int sessionId, int exp);

int set proj condl (int sessionId, int exp)
int set proj cond2(int sessionId, int exp)
int set proj cond3(int sessionId, int exp);
int set proj cond4 (int sessionId, int exp)

/*
Functions used to update the SIS Database

*/

int Add Node (int sessionId, IDENTIFIER * node name, int level);

int Add Named Attribute(int sessionId, IDENTIFIER *attribute, IDENTIFIER *from,

cm_value *to, int iLevel, int catSet);

int Add Unnamed Attribute (int sessionId, IDENTIFIER * from, cm value * to, int

catSet) ;

int Add Instance Set (int sessionId, int from set, IDENTIFIER * to);

int Add Instance (int sessionId, IDENTIFIER * from, IDENTIFIER * to);

int Add IsA(int sessionId, IDENTIFIER * from, IDENTIFIER * to);

int Delete Node (int sessionId, IDENTIFIER * node name);

int Delete Named Attribute(int sessionId, IDENTIFIER *attribute, IDENTIFIER * from);

int Delete Unnamed Attribute (int sessionId, IDENTIFIER * attribute);

August 2002/v2.2.2 -46- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

int Delete Instance Set (int sessionId, int from set, IDENTIFIER * to);

int Delete Instance (int sessionId, IDENTIFIER * from, IDENTIFIER * to);

int Delete IsA(int sessionId, IDENTIFIER * from, IDENTIFIER * to);

int Rename Node (int sessionId, IDENTIFIER * node, IDENTIFIER * NewNodeName) ;

int Rename Named Attribute(int sessionId, IDENTIFIER *attribute, IDENTIFIER * from,
IDENTIFIER * NewName) ;

int Change Named Attribute To(int sessionId, IDENTIFIER *Attribute, IDENTIFIER *From,
cm_value *To, cm value *NewTo);

int Change Unnamed Attribute To(int sessionId, IDENTIFIER *attribute, cm value *To,
cm_value *NewTo);

int Change Instance To(int sessionId, IDENTIFIER * from, IDENTIFIER * to, IDENTIFIER *
NewTo) ;

int Change IsA To(int sessionId, IDENTIFIER * from, IDENTIFIER * to, IDENTIFIER *
NewTo) ;

/*
Functions used to work on tuples

*/

int return relation(int sessionld, int Fromset, int CatSet, int ToSet);

int unary on tuple(int sessionId, int set id);

int return tuple(int sessionId, int set id, cm value *Item);

int get new_col(int sessionId, int set id);

int tuple reset join pos(int sessionId, int set id);

int tuple set input col (int sessionId, int set id,int pos);

int tuple set join pos(int sessionId, int set id, int x, int y);

int tuple no_projection column(int sessionId, int set id,int x);

int tuple join(int sessionId, int set id, int x);

int tuple union(int sessionId, int set id, int x);

int tuple difference(int sessionId, int set id, int x);

/*
Operators

*/

int SYS ID(int sessionId, int obj);

int NODE (int sessionId, 1 name nodename) ;

int LINK(int sessionId, 1 name fromcls, 1 name linkname);

int STR VAL(int sessionId, char* string);

int VAL (int sessionId, int int value);

int CARD(int sessionId, int set id);

int SUCC (int sessionId);

int FAIL(int sessionId);

int AND(int sessionId, int expl, int exp2);

int OR(int sessionId, int expl, int exp2);

int NOT (int sessionId, int exp);

int BELONGS (int sessionId, int obj, int set id);

int MATCH(int sessionId, int ptrn_set id, int set id);

int EQ(int sessionId, int wvall, int val2);

int GT (int sessionId, int wvall, int val2);

int GTE (int sessionId, int wvall, int val2);

int LT (int sessionId, int wvall, int val2);

int LTE (int sessionId, int wvall, int val2);

int BEFORE (int sessionId, int tml , int tm2);

int AFTER (int sessionId, int tml , int tm2);

int TIME EQUAL (int sessionId, int tml , int tm2);

int MEETS (int sessionId, int tml , int tm2);

int MET BY (int sessionId, int tml , int tm2);

int OVERLAPS (int sessionId, int tml , int tm2);

int OVERLAPPED BY (int sessionId, int tml , int tm2);

int DURING (int sessionId, int tml , int tm2);

int CONTAINS (int sessionId, int tml , int tm2);

int STARTS (int sessionId, int tml , int tm2);

int STARTED_BY (int sessionId, int tml , int tm2);

int FINISHES (int sessionId, int tml , int tm2);

int FINISHED BY (int sessionId, int tml , int tm2);

int CBEQ (int sessionId, int tml , int tm2);

int CBLT (int sessionId, int tml , int tm2);
int CBLE (int sessionId, int tml , int tm2);
int CBGT (int sessionId, int tml , int tm2);
int CBGE (int sessionId, int tml , int tm2);
int MBEQ (int sessionId, int tml , int tm2);
int MBLT (int sessionId, int tml , int tm2);
int MBLE (int sessionId, int tml , int tm2);
int MBGT (int sessionId, int tml , int tm2);

int MBGE (int sessionId, int tml , int tm2);

int SET EQUAL (int sessionId, int setl, int set2);

int SET DISJOINT (int sessionId, int setl, int set2);
int SET ID(int sessionId, int set id);

int SET UNION (int sessionId, int setl, int set2);

int SET COPY (int sessionId, int setl, int set2);

int SET INTERSECT (int sessionId, int setl, int set2);
int SET DIFFERENCE (int sessionId, int setl, int set2);

August 2002/v2.2.2 -47- ICS-FORTH

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

SIS- Application Programmatic Interface, Reference Manual

GET CLASSES (int sessionId, int val);

GET_ALL CLASSES (int sessionId, int wval);

GET SYSCLASS (int sessionId, int val);
GET_ALL_SYSCLASSES (int sessionld, int wval);

GET INSTANCES (int sessionId, int val);

GET_ALL INSTANCES (int sessionId, int wval);

GET SUPERCLASSES (int sessionId, int val);

GET ALL SUPERCLASSES (int sessionId, int val);

GET_ ALL SYSSUPERCLASSES (int sessionId, int val);
GET_SUBCLASSES (int sessionId, int val);
GETiALLisUBCLASSES(int sessionId, int wval);

GET LINK FROM(int sessionId, int val);

GET CLASS ATTR_FROM(int sessionId, int val);
GET_CLASS_ATTR(int sessionId, int val);

GET ALL CLASS ATTR(int sessionId, int val);

GET LINK TO(int sessionId, int val);

GET FROM VALUE (int sessionId, int val);

GET_TO VALUE (int sessionId, int wval);
GET_LINK_FROM BY CATEGORY (int sessionId, int val, int obj);
GET_LINK_TO BY CATEGORY (int sessionId, int val, int obj);

August 2002/v2.2.2 -48-

ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix B - An Example

Let's see a full example

PhysicalOb’ - Pats

METAY CLASS LEYEL |

whesls

AMT-9855 E

Cylind3

ABC 12345

Catalyst1
TOKEN LEVEL |

Figure 2 : A TELOS model

A model from the real world that can be easily described with the TELOS language.
The instance relationship is not shown in the picture in order not to be too
complicated. The instance relationships that hold are the obvious. CAR, WHEEL,
BODY, ENGINE, CAT ENGINE, CYLINDER, GEARBOX, TRANSMIS and
CATALYST are all instances of PlysicalObj and wheels, body, engine, cylinder,
gearbox, transmission and catalyst link objects are instances of Parts attribute of
PlysicalObj. Similarly there are instance relations between the objects at Token Level
and objects at Simple Class Level. Object ABC-12345 is instance of CAT _ENGINE
simple class object.

August 2002/v2.2.2 -49- ICS-FORTH

Here follows the TELOS code which describes the semantic net of Figure 2.

SIS- Application Programmatic Interface, Reference Manual

BEGINTRANSACTION

META1 CLASS LEVEL

TELL Individual PhysicalObj in M1 Class

with attribute
Parts : Phy
end PhysicalObj

TELL Individual
with Parts
wheels
body
engine
end CAR

TELL Individual
end WHEEL

TELL Individual
end BODY

TELL Individual

with Parts
cylinder
gearbox
transmissio
end ENGINE

TELL Individual CYLINDER in S Class,

end CYLINDER

TELL Individual GEARBOX in S Class,

end GEARBOX

TELL Individual
end TRANSMISSION

TELL Individual CAT ENGINE in S Class,

with Parts
catalyst
end CAT ENGINE

TELL Individual CATALYST in S Class,

end CATALYST

TELL Individual
with wheels
wl : Wheell
w2 : Wheel2
w3 : Wheel3
w4 : Wheeld
with body
bd : Bodyl
with engine
en : (ABC-1
end (AMT-9655)

TELL Individual
end Wheell

TELL Individual
end Wheel2

TELL Individual
end Wheel3

TELL Individual
end Wheel4

TELL Individual

August 2002/v2.2.2

sicalObj

SIMPLE CLASS LEVEL

CAR in S Class,

WHEEL;
BODY;
ENGINE

WHEEL in S Class,

BODY in S_

ENGINE in S Class,

CYLINDER;
GEARBOX;

n : TRANSMISSION

TRANSMISSION in S Class,

Class,

CATALYST

TOKEN CLASS LEVEL

(AMT-9655)

’

’

’

2345)

Wheell in

Wheel2 in

Wheel3 in

Wheel4d in

PhysicalObj

PhysicalObj

PhysicalObj

in Token, CAR

Token,

Token,

Token,

Token,

Bodyl in Token,

WHEEL

WHEEL

WHEEL

WHEEL

BODY

PhysicalObj

PhysicalObj

PhysicalObj

PhysicalObj

PhysicalObj isA ENGINE

PhysicalObj

-50-

ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

end Bodyl

TELL Individual (ABC-12345)

with cylinder
cl : Cylindl;
c2 : Cylind2;
c3 : Cylind3;
c4 : Cylind4
with gearbox
gb : GB1
with transmission
tr : Transmisl
with catalyst
ca : Catalystl
end (ABC-12345)

TELL Individual Cylindl
end Cylindl

TELL Individual Cylind2
end Cylind2

TELL Individual Cylind3
end Cylind3

TELL Individual Cylind4
end Cylind4

TELL Individual GB1l in Token,

end GB1

TELL Individual Transmisl in Token,

end Transmisl

in

in

in

in

in Token,

Token,

Token,

Token,

Token,

CYLINDER

CYLINDER

CYLINDER

CYLINDER

GEARBOX

TELL Individual Catalystl in Token, CATALYST

end Catalystl

ENDTRANSACTION

CAT ENGINE

TRANSMISSION

Here follows the source code of an application, which uses the C programmatic
interface (SIS C-API) to query the SIS data base which contains the model of Figure

2.

The application, does the following :

1. Prints instances of "PhysicalObj".

2. Prints instances of "PhysicalObj" and their instances too.
3. Prints logical names of all links pointing from object CAR.

4. Prints information for all links pointing from object CAR.

5. Prints all links of meta-category Parts traversed, starting from object AMT-9655.

August 2002/v2.2.2

-51-

ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

/**

*

d % oF b ok ok R b O X o b ok ok F F X o oF ok ok ok ok X X X

Semantic Index System

COPYRIGHT (c) 1992 by Institute of Computer Science,
Foundation of Research and Technology - Hellas
POBox 1385, Heraklio Crete, GR-711 10 GREECE

ALL RIGHTS RESERVED
This software is furnished under license and may be used only in
accordance with the terms of that license and with the inclusion
of the above copright notice. This software may not be provided

or otherwise made available to, or used by, any other person. No
title to or ownership of the software is hereby transferred.

Module
Version
Purpose

Author
Creation Date : Date of last update

Remarks

**/

#include "stdlib.h"
#include "stdio.h"
#ifdef SIS WIN32

#include "conio.h"

#endif

#include "sis kernel/time.h"

#include "cpp api/cs_defs.h"

#include "cpp_api/identifier.h"
#include "cpp api/sis_classes.h"
#include "cpp api/c_session wrapper.h"

void print value(cm value *val);

main (int argc, char** argv)

{

1 name cls,

label;
categories_set categs;
int ret setl,

ret set2;

cm_value cmv;
int sessionID;

if (argc != 3) {
fprintf (stderr, "Error invoking demo\n");
fprintf (stderr, "Usage : %$s <host> <port> where server resides\n",
argv[0]);
exit (-1);
}

#ifdef CLIENT SERVER

create SIS CS Session(&sessionID, argv([l], atoi(argv[2]), "", "");

felse

int *start t = NULL;
char *db dir;

get_db dir(sdb_dir); /* exits if DB _DIR is not defined ... */

start t = init start telos(db dir);

create SIS SA Session(&sessionID, start t, argv([1l], atoi(argv[2]), "", "");
#endif

open_connection(sessionID);
begin query(sessionlID);

reset name_ scope (sessionlID);

August 2002/v2.2.2 -52- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

if (set_current node(sessionID, "PhysicalObj") != APIFail)
if ((ret_setl = get instances(sessionID, 0)) != APIFail)
reset set (sessionID, ret setl);
printf ("\nINSTANCES OF 'PhysicalObj' \n") ;
while (return nodes (sessionID, ret setl, label) != APIFail)
printf (" %s\n", label);
}
if ((ret_set2 = get instances(sessionID, ret setl)) != -1) {
set _union(sessionID, ret setl, ret set2);
reset set (sessionID, ret setl);
printf ("\nALL INSTANCES OF 'PhysicalObj' \n") ;
while (return nodes(sessionID, ret setl, label) != APIFail)
printf (" %$s\n", label);
}
free all sets(sessionlID);
reset name_ scope (sessionlID);
if (set_current node (sessionID, "CAR") != APIFail)
if ((ret _setl = get link from(sessionID, 0)) != APIFail)
reset set(sessionID, ret setl);
printf ("\nLINKS FROM 'CAR' \n") ;
while (return nodes(sessionID, ret setl, label) != APIFail)
printf (" %$s\n", label);
reset set (sessionID, ret setl);
printf ("\nINFO ABOUT LINKS FROM 'CAR' \n") ;
while (return link(sessionID, ret setl, cls, label, &cmv) != APIFail) {
printf (" $10s --- %10s ---> ", cls, label);
print value (&cmv) ;
}
}
strcpy(categs[0].fcl, "PhysicalObj");
strcpy(categs[0].cat, "Parts");
categs[0].direction = FORWARD;
categs[l].direction = 0;
set categories(sessionID, categs);
free all sets(sessionlID);
reset name_ scope (sessionlID);
if (set_current node (sessionID, "AMT-9655") != APIFail)
if ((ret setl = get traverse by meta category(sessionID, 0, NOISA)) != APIFail) {
reset set(sessionID, ret setl);
printf ("\nTRANSITIVE QUERY FROM 'AMT-9655' (meta-category Parts) \n") ;
while ((return link(sessionID, ret setl, cls, label, &cmv)) != APIFail) ({
printf (" %$10s --- %10s ---> ", cls, label);
print value (&cmv) ;
}
}
end query (sessionlID);
close connection(sessionID);
release SIS Session(sessionID);
// Wait for a keyboard hit
printf ("Press any key to exit...\n");
getchar () ;
}
void print value(cm value *val)
{
char *tmp;
if (val == NULL) {
return;
}
switch (val->type) {
case TYPE INT printf ("Integer %$d \n",val->value.n);
break;
case TYPE STRING printf ("String %s \n",val->value.s);
break;
case TYPE FLOAT printf ("Float $f \n",val->value.r);
break;
case TYPE NODE printf ("Logical Name %s \n",val->value.s);
break;
case TYPE TIME tmp = (val->value.t) .present();
printf ("Time %s \n", tmp) ;
free (tmp) ;
August 2002/v2.2.2 -53- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

break;

On WIN32 systems the include files that should be used to compile this code are:
sis kernel/time.h,
cpp_api/cs_defs.h,
cpp_api/identifier.h,
cpp_api/sis _classes.h,
cpp_api/c_session wrapper.h.

On WIN32 systems the libraries (Borland 5.01 libraries) that should be used to link
this code are:

Client — Server:

e lib ¢ api session cs 2b.lib (The C interface SIS API)
cpp_api_cs_2b.lib (The C++ interface SIS API)
lib_sis_kernel 2b.lib (The SIS Kernel)
lib_time 2b.lib (Time functions library)
ccomms_2b.lib (Client Communications)
connection_2b.lib (Used to open a connection to the server)
libl.lib

Direct Access:
No direct access interface (using sessions) is provided. Instead we provide a set
of libraries for backward compatibility that we describe in “Appendix G -
Backwards compatibility”.

C APl on DLL:
e api_dll.dll (The C interface SIS API)
Note: the TIME class is not implemented in dll library. So in order to compile
the example, the code in function print_value() should be changed:

TYPE TIME : /* not implemented yet */
/*
tmp = (val->value.t) .present();
printf ("Time : %s \n",tmp) ;
free (tmp) ;
*/

break;

Also notice that operator functions decribed in sections 6.3.3.1, 6.3.3.2, 6.3.3.3
and 6.3.3.4 are renamed (due to dll-library naming concflict) having OPER as

prefix (e.g. function GET SUPERCLASSES() was renamed to
OPER GET SUPERCLASSES()) .

August 2002/v2.2.2 -54- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix C - Changes from previous versions

In the process of upgrading the functionality of the Application Programmatic
Interface some functions changed name in order to be more readable or to be in
accordance with the API function naming conventions. Some other functions changed
the number or the order of their arguments to be in accordance with the API function
argument passing conventions.

Changes from version 1.3 to version 1.3.1

The function MATCH(int set_id, int prtn_set id) replaced the function MATCH (int
prin_set _id, int set_id). The order of the argument changed.

The function get matched(int obj set id, int prtn_set id) replaced the function
get matched(int prtn_set _id, int obj set id). The order of the argument changed.

The function set put prm(int set id, cm value *cmval) replaced the function
set_put_pri(int set_id, cm_value *cmval). The name of the function changed.

The function return_prm(int set id, cm value *cmval) replaced the function
return_prs(int set_id, cm_value *cmval). The name of the function changed.

Some new functions have been added to the API: (a) all the functions that handle
tuples e.g. tuple join() (described in section 6.6, (b) functions to compare time
intervals e.g. CBEQ() (described in section 6.3.3.1).

New functions for selecting and establishing the communication with the server have
been added: set_server_info(), get db_dir(), and init_start_telos().

The function begin_query(int* start t) replaced the function begin_query(). The
argument is declared.

Changes from version 1.3.1 to version 2.0
None. The manual version-numbering follows the code version-numbering.
Changes from version 2.0 to version 2.1

New functions for selecting and establishing the communication with the server have
been added: open_connection() and close connection().

The functionality of the functions begin_query() and end_query() changed. They are
no longer used to establish the communication with the server, but only to start and
close the query sessions.

Changes from version 2.1 to version 2.2
Addition of section 6.7 (Update Functions).

Change of the return values of the begin_query() and begin_transaction() API
functions.

Addition of DBUserName DBUserPassword parameters to the init SIS API CS and
init SIS API SA functions.

August 2002/v2.2.2 -55- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

The function get inher_link from() replaced the function get inher link(). Its
functionality changed. The function get inher_link to() was added.

Changes from version 2.2 to version 2.2.1

In order to provide real multi-threading to the clients that were using the SIS, we
introduced the notion of sessions for SIS C and Java programmatic interface.

Creating multiple instances of QClass (JAPI) was not enough to provide multi-thread
access to the SIS-Server, since the underlying libraries (dll's) did not support it. Now
these libraries support such mechanism via sessions. Thus now creating multiple
QClass instances (JAPI) and creating separate sessions for each instance enables the
application developer to have real multi-thread access to the SIS-Server.

All C-API functions have changed: they all take as first argument the sessionID
(integer). A session is created by the functions create SIS CS Session() and
create SIS SA Session(), which create a session and returns its ID. These functions
have replaced the functions init SIS API CS() and init SIS API SA()
accordingly. A session that is no longer needed may be released by
release SIS Session(), which replaced the function close_ SIS API().

Also a case insensitive search mechanism was added. We introduced function
get_matched_case_insensitive().

Changes from version 2.2.1 to version 2.2.2

The xml description generation mechanism was added. We introduced function
return_xml_description().

We also introduced function free sis_allocated _space() to enable deallocating space
that was allocated for the xml description buffer or the struct cm value string
elements.

August 2002/v2.2.2 -56- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix D - C++ Programmatic Interface

In the following we present the basic differences between the C application

programmatic interface (C-API) and the C++ application programmatic Interface
(C++ API).

The interface is built on two classes (sis_api, SIS Connection) which provide as
public member functions all the functions of described in this document.
SIS Connection class provides the connection and transaction handling (for

quering/updating) mechanism: open connection(), close connection(),
begin query(), end query(), begin transaction(), end transaction(),

etc., while sis api class provides the rest of the functions: set current node (),
get classes (), get instances(), etc.

Functions such as create SIS CS Session(), release SIS Session() have no
meaning since multi-threading can be achieved by multiple instances of classes
sis_api and SIS Connection. Thus the first argument of the functions of this API
(sessionID) is ommited.

Applications build with C++API need different include files and libraries to be
compiled. Below we present an example which is the C++ implementation of the
example presented in “Appendix B - An Example”.

/**
*

Semantic Index System

COPYRIGHT (c) 1992 by Institute of Computer Science,
Foundation of Research and Technology - Hellas
POBox 1385, Heraklio Crete, GR-711 10 GREECE

ALL RIGHTS RESERVED

This software is furnished under license and may be used only in
accordance with the terms of that license and with the inclusion
of the above copright notice. This software may not be provided
or otherwise made available to, or used by, any other person. No
title to or ownership of the software is hereby transferred.

Module
Version :

Purpose :

Author
Creation Date : Date of last update :

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* Remarks :
*

*

*

**/

#include "stdlib.h"
#include "stdio.h"
#ifdef SIS WIN32

#include "conio.h"
#endif

#include "sis kernel/time.h"
#include "cpp api/cs_defs.h"
#include "cpp api/identifier.h"
#include "cpp_api/sis_classes.h"

August 2002/v2.2.2 -57- ICS-FORTH

#include
#include
#include

#include

SIS- Application Programmatic Interface, Reference Manual

"sis_kernel/telos_ro.h"
"sis_kernel/obj_check.h"
"sis kernel/initial.h"

"cpp_api/cs_defs.h"

#ifdef CLIENT_ SERVER
#include "cpp api/cs comms.h"

#endif

#include "cpp_ api/query func.h"

#include "cpp_api/set tuple.h"

#include "cpp api/q tmpsets.h"

#include "cpp api/g expstack.h”

#include "cpp_api/cs_errcodes.h"

#include "cpp api/q ccache.h"

#include "cpp api/q class _header.h"

#include "cpp_api/connection.h"

[/ —mmmmmmm————— Forward declarations -------

void print value(cm value *val);

main (int argc, char** argv)

{

1 name cls,

label;

categories_set categs;

int

ret setl,
ret set2;

cm_value cmv;

sis api *Q1l = NULL;
SIS _Connection *Connection_classl = NULL;

if

}

// init SIS API CS(...)
SOCKET S = 0;

01 = new sis api(S);

if (Q1 == NULL) return -1;

Connection classl = new SIS Connection(Ql, argv[l], atoi(argv([2]),
if (Connection classl == NULL) return -1;

// open_connection ()
Connection classl->open connection();

S =

Connection classl->GetSocket();

Ql->SetSocket (S) ;

Connection classl->begin query();

Ql->reset name scope();

if (Ql->set current node ("PhysicalObj") != APIFail)

if ((ret_setl = Ql->get instances(0)) != APIFail) {
Ql->reset set (ret setl);
printf ("\nINSTANCES OF 'PhysicalObj' : \n");
while (Ql->return nodes (ret setl, label) != APIFail)

printf (" %s\n", label);
}
if ((ret_set2 = Ql->get instances(ret_setl)) != -1) {

}

Ql->set union(ret setl, ret set2);
Ql->reset set (ret setl);

printf ("\nALL INSTANCES OF 'PhysicalOb3j' : \n");
while (Ql->return nodes (ret setl, label) != APIFail)
printf (" %s\n", label);

Ql->free all sets();
Ql->reset name scope();

if

(Q1->set _current node ("CAR") != APIFail)

if ((ret setl = Ql->get link from(0)) != APIFail) {

Ql->reset set (ret setl);
printf ("\nLINKS FROM 'CAR' : \n");

August 2002/v2.2.2 -58-

(argc = 3) {
fprintf (stderr, "Error invoking demo\n");
fprintf (stderr, "Usage : %s <host> <port> where server resides\n",
argv(0]) ;
exit (-1);

(IRl
’

nwy

ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

while (Ql->return nodes (ret setl, label) != APIFail)
printf (" %s\n", label);

Ql->reset set (ret setl);

printf ("\nINFO ABOUT LINKS FROM 'CAR' : \n");

while (Ql->return link(ret_setl, cls, label, &cmv) != APIFail) {
printf (" %$10s --- %10s ---> ", cls, label);

print_value (&cmv) ;

}

strcpy (categs([0].fcl, "PhysicalObj");
strcpy(categs[0].cat, "Parts");
categs[0] .direction = FORWARD;
categs[l].direction = 0;

Ql->set categories(categs);

Ql->free all sets();
Ql->reset name scope () ;

if (Ql->set current node ("AMT-9655") != APIFail)
if ((ret_setl = Ql->get traverse by meta category(0, NOISA)) != APIFail) {
Ql->reset set (ret setl);
printf ("\nTRANSITIVE QUERY FROM 'AMT-9655' (meta-category : Parts) : \n");
while ((Ql->return link(ret setl, cls, label, &cmv)) != APIFail) {
printf (" %$10s -——- %10s ---> ", cls, label);

print value (&cmv) ;

}
Connection classl->end query();

// close connection(...)
Connection_classl->close_connection();

// close SIS API(...)

if (Ql !'= NULL) delete Ql1;

if (Connection classl != NULL) delete Connection classl;
// Wait for a keyboard hit

printf ("Press any key to exit...\n");
getchar();

void print value(cm _value *val)
char *tmp;
if (val == NULL) {
return;

}

switch (val->type) {

case TYPE INT : printf ("Integer : %d \n",val->value.n);
break;

case TYPE STRING : printf("String : %$s \n",val->value.s);
break;

case TYPE FLOAT : printf("Float : %f \n",val->value.r);
break;

case TYPE NODE : printf("Logical Name : %s \n",val->value.s);
break;

case TYPE TIME : tmp = (val->value.t) .present();
printf ("Time : %s \n", tmp) ;
free (tmp) ;
break;

On WIN32 systems the include files that should be used to compile this code are:

sis kernel/time.h,

cpp_api/cs_defs.h,

cpp_api/identifier.h,

cpp_api/sis _classes.h,

sis_kernel/telos ro.h,

sis kernel/obj check.h,

sis_kernel/initial.h,

August 2002/v2.2.2 -59- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

cpp_api/cs_defs.h,
cpp_api/cs_comms.h,
cpp_api/query func.h,
cpp_api/set tuple.h,
cpp_api/q tmpsets.h,
cpp_api/q expstack.h,
cpp_api/cs_errcodes.h,
cpp_api/q ccache.h,

cpp_api/q class _header.h (contains the definition of sis_api),
cpp_api/connection.h (contains the definition of SIS Connection).

On WIN32 systems the libraries (Borland 5.01 libraries) that should be used to link
this code are:

Client — Server:

e cpp_api_cs 2b.lib (The C++ interface SIS API)
lib_sis_kernel 2b.lib (The SIS Kernel)
lib_time 2b.lib (Time functions library)
ccomms_2b.lib (Client Communications)
connection_2b.1ib (Used to open a connection to the server)
libl.1ib

Direct Access:

e cpp _api sa 2b.lib (The C++ interface SIS API)
lib_sis_kernel big 2b cs.lib (The SIS Kernel)
lib_time 2b.lib (Time functions library)
ccomms_2b.lib (Client Communications)
connection 2b.lib (Used to open a connection to the server)
libl.lib

Notice that before running an application that access directly an SIS base the
environment variable DB_DIR have to be set (DB_DIR: locates the directory
where the SIS database exists).

C API on DLL:
There is no C++ interface on provided on dll.

August 2002/v2.2.2 -60- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix E - Java Programmatic Interface

In the following we present the basic differences between the C application
programmatic interface (C-API) and Java application programmatic interface (JAPI).

The interface is built on class oclass, which provides as public member functions all
the functions of described in this document. The only difference is the functions
described in sections 6.3.3.1, 6.3.3.2, 6.3.3.3 and 6.3.3.4 are having oper as prefix
(e.g. function GET SUPERCLASSES () was renamed t0 operGET SUPERCLASSES()) .

The structures defined for argument passing, such as cm value, category set etc.
are implemented as separate a package and all the classes and dllI’s are provided in a
jar file (called “japil4.jar” for version 1.4 of the Java-API, which is the version
presented here). We use these structures as arguments to the functions described in
this document. The Java classes that replace them are:
e 1nt replaces int (an integer argument, whenever is used ‘pass-by-value’)
e IntegerObject replaces int* (an integer argument, whenever is used ‘pass-
by-reference’)
e sString replaces char* (a string argument, whenever is used ‘pass-by-value”’)
® sStringObject replaces char* (a string argument, whenever is used ‘pass-by-
reference’)
e CMvalue replaces cm value
® CategorysSet replaces category set
® Identifier replaces IDENTIFIER
e Time replaces TIME (not implemented yet)
Also free_sis_allocated_space() is not provided in SIS JAPI.

Below we present an example which is the Java implementation of the example
presented in “Appendix B - An Example”.

import java.io.*;
class Car {

public Car() {
QClass Q = new QClass();
IntegerObject sis_session = new IntegerObject();

Q.create SIS CS Session(sis session, "agnes",1291, "", "");
Q.open_connection(sis_session.getValue());

Q.begin query(sis session.getValue());
Q.reset name scope (sis_session.getValue());

StringObject strobject = new StringObject();
StringObject label = new StringObject () ;
StringObject cls = new StringObject () ;
CMValue cmv = new CMValue () ;

int ret setl = -1, ret set2 = -1;

Q.reset name scope (sis_session.getValue());
strobject.setValue ("PhysicalObj") ;

if (Q.set_current node(sis_session.getValue(), strobject) != Q.APIFail)
if ((ret_setl = Q.get instances(sis_session.getValue(), 0)) != Q.APIFail) {
Q.reset set(sis_session.getValue(), ret setl);
System.out.println ("\nINSTANCES OF 'PhysicalObj' : \n");

while (Q.return nodes(sis_ session.getValue(),ret setl, label) !=
Q.APIFail)

August 2002/v2.2.2 -61- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

System.out.println (label);
}

if ((ret_set2 = Q.get instances(sis session.getValue(),ret setl)) != Q.APIFail) {
Q.set union(sis_session.getValue(), ret setl, ret set2);
Q.reset set(sis_session.getValue(), ret setl);
System.out.println ("\nALL INSTANCES OF 'PhysicalObj' : \n");
while (Q.return_nodes(sis_session.getValue(), ret_setl, label) != Q.APIFail)
System.out.println (" " +label);

}

Q.free all sets(sis_session.getValue());
Q.reset name scope (sis_session.getValue());
strobject.setValue ("CAR") ;
if (Q.set current node(sis session.getValue(), strobject) != Q.APIFail)
if ((ret setl = Q.get link from(sis session.getValue(), 0)) != Q.APIFail) {

Q.reset set(sis_session.getValue(), ret setl);

System.out.println ("\nLINKS FROM 'CAR' : \n");

while (Q.return nodes(sis_session.getValue (), ret setl, label) !=

Q.APIFail)
System.out.println (" " + label);

Q.reset set(sis_ session.getValue(), ret setl);
System.out.println ("\nINFO ABOUT LINKS FROM 'CAR' : \n");
while (Q.return link(sis_session.getValue(), ret setl, cls, label, cmv) !=
Q.APIFail) {
System.out.print (" " + cls + " -—=- " + label + " ---> ");
print value (cmv) ;

}

Q.free all sets(sis_session.getValue());
Q.reset name scope (sis_session.getValue());

StringObject strfclA
StringObject strcatA
StringObject strfclB
StringObject strcatB

new StringObject ("PhysicalObj");
new StringObject ("Parts");

new StringObject ("end");

new StringObject ("end");

CategorySet[] categs= new CategorySet[2];

CategorySet csobjl = new CategorySet (strfclA.toString(), strcatA.toString(),
QClass.FORWARD) ;

CategorySet csobj2 = new CategorySet (strfclB.toString(), strcatB.toString(), 0);

categs[0] = csobjl;

categs[l] = csobj2;

Q.set categories(sis session.getValue(), categs);

strobject.setValue ("AMT-9655") ;

if (Q.set current node(sis_session.getValue(), strobject) != Q.APIFail)
if ((ret setl = Q.get traverse by meta category(sis session.getValue(), O,
QClass.NOISA)) != Q.APIFail) {
Q.reset set(sis_session.getValue(), ret setl);

System.out.println ("\nTRANSITIVE QUERY FROM 'AMT-9655' (meta-category
Parts) : \n");
while ((Q.return link(sis session.getValue(), ret setl, cls, label, cmv))
!= Q.APIFail) {
System.out.print (" " + cls + " -—=- " + label + " ---> ");
print value (cmv) ;

}
Q.end query(sis session.getValue());

Q.close connection(sis_session.getValue());
Q.release SIS Session(sis_session.getValue());

static public void print value (CMValue cmv) {
int type;

type =cmv.getType();

switch (type) {

case CMValue.TYPE INT :System.out.println(cmv.getInt()); break;
case CMValue.TYPE STRING :System.out.println(cmv.getString()); break;
case CMValue.TYPE FLOAT:System.out.println(cmv.getFloat()); break;
case CMValue.TYPE NODE :System.out.println(cmv.getString()); break;
case CMValue.TYPE TIME :System.out.println(cmv.getTime()); break;
case CMValue.TYPE SYSID:System.out.println(cmv.getSysid()); break;

}

August 2002/v2.2.2 -62- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

}

public static void main(String[] args) {
new Car();
System.out.println ("press any key to exit....");
try{
System.in.read();
}catch (IOException e) {
System.out.println ("Cannot Read!!!");

}

August 2002/v2.2.2 -63- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

Appendix F — Describing in XML

Below we present the XML document type (DTD) definition for describing the data,
as this is extracted by return_xml_description() function.

<?xml version='1l.0' encoding='UTF-8' 2>

<!--Generated by XML Authority-->

<!ENTITY % sys_lnam "sysid? , log nam? , from lnam*">
<!ENTITY % primitive "str value | int value | flot value | tim value">
<!ELEMENT star (target , from? , to? , sysclass of? , class of* , instances? ,

subcl of* , supercl of* , attribute from* , attribute to*)>
<!ELEMENT target (%sys_lnam;)>

<!ELEMENT class of (%sys lnam;)>

<!ELEMENT sysclass_of (%sys_lnam;)>

<!ELEMENT subcl of (%sys lnam;)>

<!ELEMENT supercl of (%sys_lnam;)>

<!ELEMENT instances EMPTY>

<!ELEMENT attribute from (sysid? , log nam? , ((to_sysid? , to_lnam?) | %primitive;)?
, inher from? , categ* , attribute from*)>

<!ELEMENT attribute to (sysid? , log nam? , from sysid? , from lnam* , inher from? ,
categ* , attribute from*)>

<!ELEMENT from (%sys lnam;)>
<!ELEMENT to ((sysid? , log nam?) | S%primitive;)>
<!ELEMENT sysid (#PCDATA)>
<!ELEMENT log nam (#PCDATA)>
<!ELEMENT from lnam (#PCDATA)>
<!ELEMENT to_ sysid (#PCDATA)>
<!ELEMENT to lnam (#PCDATA) >
<!ELEMENT categ (%sys_lnam;)>
<!ELEMENT inher from (%sys lnam;)>
<!ELEMENT str value (#PCDATA)>
<!ELEMENT int value (#PCDATA) >
<!ELEMENT tim value (#PCDATA)>
<!ELEMENT flot value (#PCDATA) >

<!ELEMENT from sysid (#PCDATA)>

August 2002/v2.2.2 -64- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

Appendix G - Backwards compatibility

In to keep SIS C programmatic interface backward compatible to the previous version
(ver. 2.2) we provide a set of include files and libraries that do not use sessions and
thus will not take advantage of the multi-thread capabilities of the SIS server.

The basic change of version 2.2 and 2.2.1 is the introduction of sessions. These
libraries inforce the use of the functions init SIS API CS(), init SIS API SA()
and close_SIS API() and all C-API functions should be used without the sessionID
as first argument.

On WIN32 systems the include files that should be used to compile this code are:
sis kernel/time.h,
cpp_api/cs_defs.h,
cpp_api/identifier.h,
cpp_api/sis classes.h,
cpp_api/c wrapper.h.

On WIN32 systems the libraries that should be used to link this code are:
Client — Server:
e lib ¢ api cs 2b.lib (The C interface SIS API)
cpp_api_cs 2b.lib (The C++ interface SIS API)
lib_sis _kernel 2b.lib (The SIS Kernel)
lib_time 2b.lib (Time functions library)
ccomms_2b.lib (Client Communications)
connection 2b.lib (Used to open a connection to the server)
libL.lib

Direct Access:

e lib ¢ api sa 2b.lib (The C interface SIS API)
cpp_api_sa 2b.lib (The C++ interface SIS API)
lib_sis_kernel big 2b cs.lib (The SIS Kernel)
lib_time 2b.lib (Time functions library)
ccomms_2b.lib (Client Communications)
connection_2b.lib (Used to open a connection to the server)
libl.lib

Notice that before running an application that access directly an SIS base the
environment variable DB DIR have to be set (DB DIR: locates the directory
where the SIS database exists).

August 2002/v2.2.2 -65- ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

INDEX

abort transactionocecceevvenenn. 11, 38, 45 EMPTY FIELD END OF TUPLE.... 35,36
Add_Instance.........ccocoeeevinciiincnennn 39, 47 END OF FIELD...cccocooriiniinennn. 35, 36, 38
Add_Instance_Set.........cccovveieincnennnn 39, 47 END OF SET cooioieiiieeeeiceceeeeieene 35,36
Add TSA .o 39,47 END OF TUPLE....cccovoirecerenne. 35, 36, 38
Add Named Attribute.........ccceeuenenee. 39,47 end query..... 8, 10, 38, 45, 54, 56, 58, 60, 63
Add Nodeooovevieiiieieeeee 39,47 end transaction............... 8,10, 11, 38,45, 58
Add_Unnamed Attribute...................... 39,47 EQuoeeeeeeee e, 19, 27, 29, 48
AFTER ..ot 20,21, 48 FAIL .ot 19, 29, 48
AND Lo 19, 48 FINISHED BY...coooeiiiriiinceinenn 22,48
API DB CHANGEDcccecvvirienennene. 10, 11 FINISHES......ccoiiriiiieeecee 22,48
API DB NOT CHANGED................. 10, 11 FORWARD.....ccoveverreriennne 35,42, 44, 54, 60, 63
APl HASH TABLES EXPANDING....... 10 free all sets......c.......... 32,47, 54, 59, 60, 63
APl HASH TABLES NEED EXPANSION free SEt..eiiriieiriieee e 32,47

.. 10 free sis_allocated space36, 42, 43, 46, 57, 62
APIFail7, 10, 11, 19, 28, 36, 39, 41, 54, 59, get all class attr.......ccceceveeneenne. 14, 26, 46

60, 62, 63 GET ALL CLASS ATTR.....cccoounee. 26,49
RIS Feat H<3001 0] 570 42,44, 46 get_all classesccooeeveevieneeeinnnee. 13, 25,46
assign_float........ccooovviiiinienies 42,44, 46 GET _ALL CLASSES....ccoooiiiiieene 25,49
FERTS) Feat 5 11| SO 42,44, 46 get_all instances...........ccoceveeeennee. 14, 26, 46
assign NOdececeveeveerienieieeee 42,44, 46 GET_ALL INSTANCES........cceeneeee. 26, 49
assign_ StriNg......occeeveereeereeeeenne 31,42, 44, 46 get_all subclasses......c.cceeeveennennee. 15, 26, 46
ASSIZN. HME .vveeeiieiieieeeceieene 42,44, 46 GET ALL SUBCLASSES.................. 26,49
BACKWARD.......ccovvrrrnne 34,35,42,44 get_all superclasses.......c.cccocueneeee. 14, 26, 46
BEFORE......cccooiiiiiinieinceeeeee 20, 48 GET ALL SUPERCLASSES............. 26,49
begin_query......... 8, 10, 45, 53, 56, 58, 59, 62 get_all Sysclasses......occoveevveriieiennene. 13, 46
begin_transaction 8,10, 11, 38, 45, 56, 58 GET_ALL SYSCLASSEScccccouee..e. 25,49
BELONGS ...t 19, 29, 48 get_all Syssuperclasses.................. 14, 26, 46
BOTH DIR ..ot 35,42, 44 GET ALL SYSSUPERCLASSES...... 26,49
CARD. ..o 24,27,29, 48 get_category from.........ccoceveinienne 16, 46
CBEQ ..ot 22,48, 56 get_category of link from 17, 46
CBGE ..ot 23,48 oS o1 (7 00) o o O 16, 46
CBGT oo 23,48 get _class attr.......ccoeceeeeee. 14, 15, 26, 27, 46
CBLE......oiiieeceeeteeeee 22,48 GET CLASS ATTR...cccoeveinnnn. 26,27, 49
CBLT .ttt 22,48 get_class_attr from..........ccccceeneeee. 15,27, 46
Change Instance TO.....cccccovveeriernennne. 41, 48 GET_CLASS_ATTR FROM 27,49
Change ISA TO .cccoocveiveieeeeeeeeee 41, 48 get classes .ooovvierienieiee 13, 25,46, 58
Change Named_Attribute To 40,41, 48 GET _CLASSES ..., 25,29,49
Change Unnamed_Attribute To 41, 48 get classid...ooeeeeienieie 12, 46
close_connection .8, 10, 45, 54, 56, 58, 60, 63 get db dir....ccoooiiieiiii, 9,45, 53, 56
close SIS API.....cccoovivviinenne 10, 57, 60, 66 gEt_CITOT MESSAZE ...eovvverveeneeeneeeneeenienieaeeans 45
(o100 (o T 3 SOOI S 44, 46 get filtered.......ccoeveeiiviiieene, 19, 27, 46
CONTAINS. ..ot 21,48 get_from node.........cocoveiiriinnnn, 17, 18, 46
create_SIS CS_Session8, 9, 10, 45, 53, 57, 58, get_from node by category.......... 17, 18, 46

62 get_from node by meta category....... 18, 46
create_ SIS SA Session 9, 10, 45, 53, 57 get_from value.........cccoeveervennne. 18,27, 46
Delete Instancecccceveeeveeveeceenenne. 40, 48 GET FROM_VALUE........cccccvevrnene. 27,49
Delete Instance Set.........cccccevevevveennne 40, 48 get_inher class_attr..........coccoeeeveenne 15, 46
Delete ISA...cooiiieiieieeeeeeee e 40, 48 get_inher link..........ccooooivninnnn, 15, 46, 57
Delete Named_ Attribute....................... 40, 47 get_inher link from.........c........... 15, 46, 57
Delete Node......cccoeveevieneeeeeeeeee 39, 47 get_inher link to.......ccccoooeerieene. 15, 46, 57
Delete Unnamed_Attribute................... 40, 47 get_instances13, 14, 26, 27, 31, 46, 54, 58, 59,
DOWNWARDScooceiiniiiiniieenen 28, 30 62,63
DURING ..ottt 21,48 GET INSTANCES......cccoceveiiennn. 26, 29, 49
EMPTY FIELD.ccooiiiinniinieerinecnens 35,36 get link from 15, 16, 27, 46, 54, 59, 63

August 2002/v2.2.2 -66- ICS-FORTH

SIS-Application Programmatic Interface, Reference Manual

GET LINK FROM....cccocovviriiiinnnes 27,49
get_link from by category 16, 27, 46
GET _LINK FROM_BY_ CATEGORY?27, 49
get_link from by meta category......... 16, 46
get link t0...ccooceiieiiiieiee 16, 17, 27, 46
GET LINK TO ..ooeiviieiriieenn 27,29, 49
get_link to by category........... 16, 17,27, 46
GET _LINK TO _BY_ CATEGORY27, 49
get_link to by meta category 17,46
get linkid.....ccooovveieniiieeee 12, 46
get 1oginam........cceeveveevieesieeieeie e 13, 46
get matched.......occoevveeieeiennnnne, 31, 46, 56, 57
get matched case insensitive......... 31,46,57
get_matched Stringcoceevveeveeennnne. 31, 46
et NEW_COl .oviiiiieiieiieieeeee e 37,48
get readlocKooveeieniieiieiee 11,45
get_subclasses ...ovvevveeeeeieeieniieins 15, 26, 46
GET SUBCLASSESccovteiiiieene. 26,49
get_Superclassesvevveeveevenieennnns 14, 26, 46
GET _SUPERCLASSES............ 26,49, 55, 62
get SySClass ...ccvvcerierieieeee e 13, 46
GET _SYSCLASS ..ot 25,49
get t0 N0de ...ovveeeeieciecieeee e 17, 18, 46
get_to node by category 17, 46
get to node by meta category............ 18, 46
get to valuecoooveeieiieieieee, 18,27, 46
GET TO VALUEccccooctvieiienne. 27,49
get traverse by all links........ccc.ceeee. 28, 46
get_traverse by category...................... 30, 46

get traverse by meta category 30, 46, 54, 60,
63

get USEr error MESSAZEeevvveeruveeruveennneens 45
get USETr eITOr Paramscccceevveerveenuneens 45
get WritelocK.....ooovveierieiieeeeee 11,45
GetSOCKELoeeeeveeeeeeeeeeeeeeeee e 45,59
GT e 19, 48
GTE ..o 20, 48
init SIS API CScccveiee 56,57, 59, 66
init SIS API SA ..o 56, 57, 66
init_start telos......cc.cevveviieiennens 9,45, 53,56
LINK .ot 24,27, 29, 48, 49
LT e 20, 48
LTE..coiieeceeeeeeeeee 20, 48
MATCH ...oocviiiinininiiieeeen, 20, 31, 48, 56
MBEQ ..ottt 23,48
MBGE ..ot 24, 48
MBGT ..ottt 23,48
MBLE ...ttt 23,48
MBLT ..ottt 23,48
MEETS ..ot 20, 48
MET BY oot 21,48
MIDDLE OF FIELD..coccocominierirnieneen. 35,36
NODE.....cccooeneuenn 24,42, 44,48, 54, 60, 63
NOISA....ooiiiireeeeee 28, 30, 54, 60, 63
NOT ettt 10, 11, 19, 31, 48
open_connection..8, 10, 45, 53, 56, 58, 59, 62
OR o 19, 29, 30, 40, 48
OVERLAPPED BY ...ccccovviiviieiene. 21,48

August 2002/v2.2.2

-67-

OVERLAPS.....ccooiinininerieieccne 21,48
POP_NAME SCOPEC...vveerereevreaireerireenaeanns 12, 46
PUL_ETTOT MESSAZE ..ccouvveeneeeeireeireeiieenieeens 45
pUt _USETr eITOr MESSAZEccvvveevveervreerunens 45
release 1ockoovvoiirienieieiieeees 11,45
release SIS Session. 8, 10, 45, 54, 57, 58, 63
Rename Named Attribute 40, 48
Rename Node.......ccooveevieiieieeieiieins 40, 48
reset_ edge Sel.......ccoveriievieciieiieeienienns 32,47
r€Set_EITOTr MESSAZE....eeruveerureerreerreerreenanes 45

reset_name_scope... 11, 12, 46, 53, 54, 59, 60,
62, 63

TESEL QUETY .eeeenireeieieiieeieeenieeeieeeiee e 11, 46
reset_set 32,33, 47, 54, 59, 60, 62, 63
reset_USer error MeSSAZE........cceeevveeerveernne 45
return_categ idS........ccoevevveciieiireiennnnns 34,47
return_Categories.......cerverurevrevennvenennns 34,47
return_edge nodes.........cocceeeveeveeiiennens 33, 47
return_fieldccoooevieiiii 35, 47
return_full link.........cccccvenrnnn. 34,35,42,47
return_full link id........ccooeveeiniineinnens 35, 47
return_full nodes........ccoecveiieiininnens 34,47
return_hidlinkoccooeiiniiniii 36, 47
PELUIN_INST..eeiieiieiieiiee e 35, 47
return_inst id........ccooevevienieciieieeiees 35, 47
110101 Y USSR 35, 47
return_iSA idccoocevierieieieeeees 35, 47
return_link.........ccceceee 34,41, 47, 54, 60, 63
return_link idccooeveiiiiiiis 34,47
return_nodes 33,47, 54, 59, 60, 62, 63
TELUIN. PIM oo 34,41, 47, 56
return_projection..........ccveeveeeveevereeeneenns 36, 47
return_relation...........ccoecvevveciiecireinnnnnns 38,48
return_ tuple.....ocoveveereeieieeieeeeees 38,48
return_xml_description....... 36, 42,47, 57, 65

set_categories.... 12, 29, 30, 34, 35, 36, 46, 54,
60, 63

Set_clear.....ooovvcieeieieieeeeeee e 33,47
set_clear lower.......ccoccvecveeeevvenieeienen. 33, 47
SEL COPY cvveeeieeriieeniteeite e eeiee s e 32,47
SET COPY..ooviriiriinininieieeeieeneenne 25,48

set_current node...7, 8, 11, 12, 37, 46, 54, 58,
59, 60, 62, 63

set_current node id...................... 7,8,12,46
set del..iiiiiiie e, 33,47
set depth.....ccooevreiiiieiieie, 12, 28, 30, 46
set_difference........ccoevveveevenieniennenen. 32,47
SET DIFFERENCE.........cccocoveirurnene. 25,48
set diSjoint.......coocvevveciveienierieeeieeee, 32,47
SET DISJOINT.....ccovvivieiriiieirieieene 24,48
set_equal .c.oocevierieieeeee e, 32,47
SET EQUAL....ccooeiriiieieeeeee 24,48
set_filter condccoocveveieireinnnnne 19, 27,47
set fl cond......ccooevevienieiieieeiees 28,29, 47
set fv cond.....cocveeieciieiiieeeee, 28,47
set get card....ccoocveeieiieieeieeeeee, 33, 47
S€t et NEW ..eevviiiriieiiieeieenieeeen 31,32,47
SET ID..cooviiiiiirieieieienees 25,26,27,29, 48
ICS-FORTH

SIS- Application Programmatic Interface, Reference Manual

SEt INEEISECE..eeuvreeieeieiieireieeieeeieeeeenens 32,47
SET INTERSECTccooeoiiiieirenenn 25,48
set_ member Ofcoccveeeieiieieeieeeen 33,47
set num_of Proj......ccceeceeecveneervenieennens 37, 46
S€t_ POSILION......evveieeieieeiieie e 33,47
set proj condlcccoeveiveiieiennnne, 36,37,47
set proj cond2ccceevveiiveiennnnne. 36,37,47
set proj cond3ccoeveiieiiieienne 36,37,47
set proj cond4cocveeiieiieieeieeeen. 36,47
SEE PUL .eeiiieieeiieeeeeee e 31, 33,47, 56
Set_ Put PrmM....cccceeevveeneveeneeennne. 31, 33,47, 56
set_server info........ccceeeveceveceriieneenen. 45, 56
set tl cond ...oooveeiveiieieeee 28,29,47
set tv cond.....coecvveveeveniieireie e, 28,29, 47
SEt UNION ..oveeereeieieeieenas 32,47, 54, 59, 63
SET UNION ..ot 25, 48
STARTED BY ..ccoveieiieieeieeeeee 22,48
STARTS ..ot 21,48
STR VAL ..ot 48
STRING EQUAL ..ottt 31
STRING LESS EQUAL .ocoooviererrrrerinanes 31
STRING LESS THAN....ocooosimrrrierirrinenns 31
STRING MATCHED ...ooorveereorrerrerrenrennnn 31

August 2002/v2.2.2

-68-

STRING NOT EQUAL....cccccovireirinens 31
string_to pPrimitive.........ceeveeeveeeeveneenennns 46
SUCC ..t 19, 48
SYS ID et 24,29, 48
TIME EQUALcceotvieieieeeee 20, 48
tuple difference........ccoocvevveciveieeiennnnns 37,48
tuple Join ..vvvvvveeecieeieieeee e 37, 48, 56
tuple no_projection_column................ 37,48
tuple_reset join_PoS........cceecerecveeevenennns 37,48
tuple set_input col.......ccoccvevevecirennnnnns 37,48
tuple _set jOIN_POS....cccccvevevevrerreiennnnns 37,48
tuple Unioncceeevevveneieireieeeeeeeens 37,48
TYPE EMPTY .ot 38,42, 44
TYPE_FLOAT.................. 41, 44, 54, 60, 63
TYPE_INT.......cccoevnee. 41, 44, 54, 60, 63
TYPE_NODE 42,44, 54, 60, 63
TYPE_STRING 41, 44, 54, 60, 63
TYPE SYSID...oooeiiiiiieieeeeeesene 63
TYPE _TIME............... 42,44, 54,55, 60, 63
unary _on_tupleccceeeeeeiieiieienieienns 38, 48
UP DOWN ..ot 28, 30
UPWARDS.....ccooiieeireeeeeeeeee 28, 30
VAL oo 24,217,209, 48

ICS-FORTH

	Introduction
	Querying models
	Client-server model to access the SIS base
	Immediate access the SIS base

	Functionality of the query and update functions
	Name stack
	Programmatic scenario
	Functions
	Query and transaction sessions
	Creating sessions to interact with a SIS data base
	Connecting to the database
	Performing queries and transactions
	Using the locking mechanism

	Set global parameters
	Queries
	Low level queries
	Simple queries
	Logical expressions - Object set filtering
	Expressions returning TRUE/FALSE
	Expressions returning an integer value
	Expressions returning a system identifier
	Expressions returning a set identifier
	An Example

	General recursive queries
	Conditions on recursive queries
	An Example

	Special recursive queries
	Pattern Matching queries
	An Example

	Set manipulation functions
	Read contents of answer sets
	Parametric projection

	Tuple handling functions
	Update Functions
	Addition Operations
	Delete Operations
	Modification Operations

	Miscalaneous utility structures and functions
	Utility structures
	struct IDENTIFIER
	struct cm_value
	struct category_set

	Memory management

	Appendix A – C-API function declaration
	Appendix B - An Example
	Appendix C - Changes from previous versions
	Appendix D - C++ Programmatic Interface
	Appendix E - Java Programmatic Interface
	Appendix F – Describing in XML
	Appendix G - Backwards compatibility
	INDEX

